

TYPE II QUANTUM COMPUTING ALGORITHM
FOR COMPUTATIONAL FLUID DYNAMICS

THESIS

James A. Scoville, Second Lieutenant, USAF

AFIT/GAP/ENP/06-17

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GAP/ENP/06-17

TYPE II QUANTUM COMPUTING ALGORITHM

FOR COMPUTATIONAL FLUID DYNAMICS

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science (Applied Physics)

James A. Scoville, BS

Second Lieutenant, USAF

March 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GAP/ENP/06-17

TYPE II QUANTUM COMPUTING ALGORITHM
FOR COMPUTATIONAL FLUID DYNAMICS

James A. Scoville, BS
Second Lieutenant, USAF

Approved:

 ____________________________________ ________
 David E. Weeks (Chairman) date

 ____________________________________ ________
 Thomas A. Niday (Member) date

 ____________________________________ ________
 William F. Bailey (Member) date

 iv

AFIT/GAP/ENP/06-17
Abstract

An algorithm is presented to simulate fluid dynamics on a three qubit type II

quantum computer: a lattice of small quantum computers that communicate classical

information. The algorithm presented is called a three qubit factorized quantum lattice

gas algorithm. It is modeled after classical lattice gas algorithms which move virtual

particles along an imaginary lattice and change the particles’ momentums using collision

rules when they meet at a lattice node. Instead of moving particles, the quantum

algorithm presented here moves probabilities, which interact via a unitary collision

operator. Probabilities are determined using ensemble measurement and are moved with

classical communications channels. The lattice node spacing is defined to be a

microscopic scale length. A mesoscopic governing equation for the lattice is derived for

the most general three qubit collision operator which preserves particle number. In the

continuum limit of the lattice, a governing macroscopic partial differential equation—the

diffusion equation—is derived for a particular collision operator using a Chapman-

Enskog expansion. A numerical simulation of the algorithm is carried out on a

conventional desktop computer and compared to the analytic solution of the diffusion

equation. The simulation agrees very well with the known solution.

 v

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr. David

Weeks, for his guidance and support throughout the course of this thesis effort. The

insight and experience was certainly appreciated. I would also like to thank Dr. Jeffrey

Yepez for the countless hours he spent with me on the phone and typing emails

discussing my thesis, and for the years of insight he shared with me.

Most importantly I would like to thank my wife for the long nights she put up

with, for the vacation that practically wasn’t, for the dinners on the table while holding a

job, for the time spent reading and correcting my thesis, and for all the love she had for

me. I couldn’t have done it without you babe—you’re a real life superwoman. I love

you.

 James A. Scoville

 vi

Table of Contents

 Page

Abstract .. iv

Acknowledgments... v

List of Figures .. viii

List of Tables ... xi

1 Introduction... 1

1.1 Overview... 1
1.2 Organization.. 3

2 Quantum Computing Summary .. 5

2.1 Quantum bits... 6
2.1.1 Quantum gates .. 6
2.1.2 Measurement... 11

2.2 Quantum algorithms.. 13
2.3 Physical quantum computers .. 14

3 Fluid Dynamics... 18

3.1 Navier-Stokes fluids: macroscopic scale .. 18
3.2 Classical lattice gas algorithm: microscopic scale................................ 21
3.3 Classical lattice Boltzmann algorithm: mesoscopic scale 23

4 Factorized Quantum Lattice Gas Algorithm... 27

4.1 The four steps process for the FQLGA... 28
4.1.1 Step 1: computational memory state encoding 28
4.1.2 Step 2: collision... 29
4.1.3 Step 3: measurement ... 29
4.1.4 Step 4: streaming... 30

4.2 Quantum lattice Boltzmann equation.. 30
4.3 Chapman-Enskog expansion... 31

4.3.1 Local equilibrium.. 33
4.3.2 Taylor series expansion around local equilibrium............................ 34

4.4 Numerical and experimental simulation of the Burgers equation 40

5 Three Qubit FQLGA Using Most General Collision Matrix.................................... 43

 vii

5.1 Microscopic scale: matrices and basis states .. 44
5.2 Mesoscopic scale: quantum lattice Boltzmann equation 46
5.3 Macroscopic scale: Chapman-Enskog .. 48

6 Diffusion Equation.. 50

6.1 Analytic treatment... 50
6.2 Numerical treatment.. 54

6.2.1 Sum of Gaussian and sinusoid initial condition................................ 54
6.2.2 Delta function initial condition ... 59

7 Conclusion .. 65

Appendix A. SU(3) Matrix .. 67

Appendix B. Analytic Solution of the Diffusion Equation.. 72

Bibliography ... 74

Vita.. 77

 viii

List of Figures

Figure Page

1. a) An XOR gate. b) A modified XOR gate that preserves the bit c1. 7

2. Controlled not gate.. 8

3. Ensemble measurement averages the measurement of N identical quantum
computers to obtain the basis coefficients. The symbol with the arrow in the
figure above is used in quantum computing literature to signify the
measurement of a quantum system. .. 11

4. Type-II quantum computer. .. 15

5. The molecule used by Pravia et al [6] in their implementation of a type II
NMR quantum computer was 13C-Chloroform, with hydrogen and carbon 13
nuclear spins serving as the qubits. The energy levels of the nuclear spin
states are split using a strong magnetic field. ... 16

6. Basic schematic of type-II NMR quantum computer. The gradient coil
creates a gradient in the magnetic field so that the nuclear spin energy levels
are shifted by different amounts depending on their physical location in the
liquid sample. This allows the RF coil to address different parts of the
liquid sample with different frequency radio pulses. Each group of
molecules that the RF coil can address with one set of frequencies is a node
in a type II quantum computer. In each node there are many molecules that
are manipulated simultaneously, so that measuring a node is an example of
ensemble measurement. This figure was used with permission from [6]............ 17

7. Triangular classical lattice gas developed by Frisch, Hasslascher, and
Pomeau. Particles at time t are marked with a single arrow; those at the next
time step t τ+ are marked with double arrows. Figure is reproduced from
[23]. ... 23

8. a) Coarse grain averaging works by taking the average over all the
microscopic states inside the mesoscopic superlattice. b) Ensemble
averaging works by taking the average over many independent microscopic
realizations to obtain the particle distribution at each site. 25

9. Decreasing the volume of the mesoscopic lattice cell size towards zero
increases the simulation resolution and, in the continuum limit, will
approximate a continuous macroscopic field.. 26

 ix

10. The 1-D factorized quantum lattice gas model developed by Yepez. Each
lattice site is simulated by a node on a NMR type II quantum computer. The
probability of finding a particle moving right at lattice site l is given by
qubit 1 in node l, and the probability of finding a particle moving left at that
lattice site is given by qubit 2. Since there are many computers per node in
a type II NMR machine, one can perform an ensemble measurement on each
node to obtain the probabilities that will be streamed via classical
communications channels to neighboring nodes. ... 27

11. Numerical results of the Burgers equation simulation carried out by Yepez,
along with the analytic solution. Agreement between the simulation and the
analytic solution is generally very good, with slight deviations occurring at
later times as a steep shock front is formed. The simulation shock front is
sharper than the analytic shock. This figure was used with permission from
[10]. ... 41

12. Experimental results of the two qubit FQLGA simulating the Burgers
equation carried out on a type II NMR quantum computer. The black dots
are the experimental results and the solid gray line is the analytic solution.
This figure was used with permission from [11]. ... 42

13. The results of the FQLGA simulation with circular boundary conditions for
a number of time steps. The simulation lattice points make up the thick gray
line while the exact solution is in black. The solution decays to the average
density of the initial condition. ... 56

14. Plot of the average percent errors over the entire lattice for the first 20 time
steps. Oscillations in these errors are apparent at the beginning of the
simulation but disappear after about ten time steps. After this, the errors
decrease as shown in Figure 16. ... 57

15. Plot of the maximum percent errors in the lattice for the first 20 time steps.
Oscillations in the maximum percent errors are also apparent at the
beginning of the simulation. The largest percent error during the simulation
occurs after the first time step, and is ~ 0.14%. .. 57

16. Plot of the average percent errors every 300 time steps. The errors decrease
as the simulation moves closer to equilibrium.. 58

17. Plot of the maximum percent error every 300 time steps. 58

18. Log-log plot of the average percent error verses the lattice resolution. The
same simulation was run with lattice lengths ranging from 50 to 12800 ,
each evaluated at 15τ . The slope of the best fit solid line is 2.01 indicating
second order convergence in space... 59

 x

19. Results of Yepez’s two qubit diffusion equation simulation with a delta
function initial condition. The left column shows the results of the
unmodified algorithm with qubits one and two streaming every time step.
The sharp spikes in these pictures are due to the noninteracting nature of all
the qubits. The right column shows a modified simulation with the left
moving qubits streaming every even time step and the right moving qubits
streaming every odd time step. The modified algorithm corrects the
deficiency in the algorithm. This figure was used with permission from [9]. 60

20. Results of my three qubit FQLGA (black data points) with the initial
condition equal to zero everywhere except at the center lattice site where it
is equal to one. The time evolution of this function is compared to the
analytic time evolution of a piecewise defined function (solid line) with an
integrated area equal to the total density of the FQLGA simulation. 62

 xi

List of Tables

Table Page

1. a) Truth table for Figure 1a. b) Truth table for Figure 1b. Inputs are left of
the gray bar, outputs are right. .. 7

2. CNOT gate truth table. Inputs are left of the gray bar; outputs are right............... 8

3. Estimates for the decoherence time tQ, operation time top, and maximum
number of operations nop for quantum computer candidates [15]. 16

4. List of relevant quantities in fluid dynamics... 21

 1

TYPE II QUANTUM COMPUTING ALGORITHM

FOR COMPUTATIONAL FLUID DYNAMICS

1 Introduction

1.1 Overview

In 1982 Richard Feynman proposed building a computer based on quantum

mechanical principles to efficiently simulate quantum systems. In the two decades since,

significant progress has been made both theoretically and experimentally towards this

end. Following Feynman’s vision, in 2002 the Air Force Research Laboratory and the

Air Force Office of Scientific Research established a basic research theme called

Quantum Computation for Physical Modeling [1]. The goal of this project is to explore

quantum algorithms and practical quantum computers to model dynamic physical

systems with an exponential increase in computational efficiency.

This thesis supports this goal by extending an algorithm designed to model fluid

dynamics using a lattice of interacting quantum systems. This algorithm was used by

Yepez to investigate Navier-Stokes equations of fluid dynamics [2-5], the diffusion

equation [6-9], and the Burgers equation [10-12]. It is called the Factorized Quantum

Lattice Gas Algorithm (FQLGA), and it derives its name from algorithms written to

model fluid dynamics on classical computers. These classical algorithms model particles

on a spatial lattice. The particles move from lattice node to lattice node in discrete time

steps. They include classical collision rules to control how particles interact when they

 2

meet at a lattice node, where the distance between nodes is defined to be a microscopic

scale length. Since the algorithms consists of a gas of virtual particles moving on a

discrete lattice, it is called a Lattice Gas Algorithm (LGA) by the fluid dynamics

community, or a Classical Lattice Gas Algorithm (CLGA) by the quantum computing

community to distinguish it from similar quantum lattice gas algorithms. One may use an

ensemble of (quantum or classical) lattice gases to develop a finite difference equation

known as the mesoscopic lattice Boltzmann equation. From this equation it is possible to

develop a macroscopic effective field theory in the continuum limit of the lattice,

essentially by taking the Taylor series expansion of the lattice Boltzmann equation

around local equilibrium in what is known as a Chapman-Enskog expansion.

The FQLGA is said to be “factorized” because it is designed to run on a quantum

computer that is not fully coherent—that is, on a computer that is factorized into many

smaller quantum computers communicating with classical information: a type II quantum

computer. This sort of computer is interesting because a prototype already exists which

has run fluid dynamics simulations [6, 7, 11]. The algorithm developed by Yepez [2-12]

uses a lattice of two quantum bit (qubit) computers to perform the computations. Instead

of moving particles across a one dimensional lattice probabilities are moved, and instead

of using collision rules to govern interactions a unitary operator called the collision

operator is used. This thesis extends this algorithm to run on a three qubit type II

quantum computer. The main contributions presented in this paper are the computation

of the lattice Boltzmann equations for the most general three qubit collision operator that

conserves particle number, and the derivation of the diffusion equation as an effective

field theory for a more specific collision operator. In addition, numerical simulations

 3

comparing the diffusion equation FQLGA simulation and the analytic solution of this

partial differential equation are presented.

This thesis is meant to be accessible to someone with a reasonable background in

quantum physics, but with little exposure to the subjects of quantum computing or fluid

dynamics. As such, I will introduce some of the basics in each of these subjects before

discussing the FQLGA.

1.2 Organization

This thesis begins with a summary of quantum computing in Section 2. This

section is aimed towards those who have studied quantum mechanics but have had little

exposure to quantum computing. It briefly discusses what a qubit is, how quantum logic

gates perform computations, and how qubit measurement affects the type of information

one may obtain from it. I attempt to make this discussion easier to follow by using

analogies with the more familiar classical bits and classical logic gates.

Following this, the main categories of quantum algorithms developed thus far are

reviewed to give readers an idea of where the FQLGA fits in the world of quantum

computing. Subsequently, several types of quantum computers in development are

discussed, along with the various challenges associated with constructing each kind of

computer. The focus of this section is on Nuclear Magnetic Resonance (NMR) quantum

computers because the most advanced quantum computer prototype to date uses NMR

technology, and because these machines are best suited for the quantum algorithm

developed in this paper.

 4

Since the FQLGA models fluid dynamics, Section 3 introduces the basics of

Navier-Stokes fluid dynamics as well as classical lattice gas and lattice Boltzmann

algorithms used to simulate these fluids. These classical algorithms can be used as an

analogy to better understand their quantum counterparts. A number of important

macroscopic dimensionless parameters used to characterize Navier-Stokes fluids are

listed and drawn on during an explanation of diffusive ordering. The lattice Boltzmann

equation, which comes from the more familiar Boltzmann equation, is also introduced.

Following this brief introduction to quantum computing and classical lattice gas

algorithms, Yepez’s factorized quantum lattice gas algorithm is introduced in Section 4.

The details of this algorithm are laid out and the unitary collision operator is introduced.

Following this is an explanation of how the entire algorithm can be contained in a single

equation, the quantum lattice Boltzmann equation (QLBE). Next, the local equilibrium

probabilities are derived and subsequently used in the Chapman-Enskog expansion of the

QLBE to derive the governing effective field theory of the lattice in the continuum limit.

This governing equation turns out to be the one dimensional Burger’s equation, which is

a second order nonlinear partial differential equation used to model turbulence and shock

formation in inelastic gases.

In Section 5 the three qubit FQLGA I have developed is introduced and the most

general three qubit collision operator that conserves particle number is derived. The

quantum lattice Boltzmann equation is obtained using this operator.

Section 6 introduces a more specific collision operator which yields the diffusion

equation as the algorithm’s continuum limit governing partial differential equation. A

complete derivation of this equation is given starting from the QLBE in section 6.1. In

 5

section 6.2 the results of a numerical simulation carried out on a conventional computer

are presented, and compared to the analytic solution of the diffusion equation. Finally, a

discussion of the error and of the convergence properties of the algorithm as compared to

the analytic solution is included.

2 Quantum Computing Summary

Quantum computing was first proposed by Richard Feynman in 1982 [13, 14].

He noted that there were certain difficulties in simulating quantum mechanical systems

on classical computers due to the exponential growth of the problem with system

complexity. He suggested developing a computer based on the principles of quantum

mechanics to overcome these difficulties. In 1985 David Deutsch expanded on this idea

while trying to use the laws of physics to derive a stronger version of the Church-Turing

thesis. This thesis states that the Turing model of computation is at least as efficient as

any other model of computation, in the sense that if one computational model can solve a

problem in time polynomial to the size of a problem, then a probabilistic Turing machine

can too [15]. Since the laws of physics are ultimately quantum mechanical, this led

Deutsch to develop the modern concept of quantum computers, which are able to

efficiently solve problems that are believed to have no efficient solutions on classical

computers and Turing machines.

Deutsch developed a simple algorithm that suggested quantum computers would

indeed have more computational power than a classical Turing machine (classical

computer). Over the next decade additional algorithms were developed culminating in

1994 with Peter Shor’s factoring and discrete logarithm algorithms [16], and in 1997 with

 6

Lov Grover’s search algorithm [17]. However, despite the immense progress made in

developing these algorithms, physicists have so far managed only modest advancements

in developing physical quantum computers.

Sections 2.1 through 2.3 are meant to give a brief overview on how quantum

computing works.

2.1 Quantum bits

In a quantum computer, qubits replace classical bits. Qubits are analogous to

classical bits in that when read (measured) they can only be 0 or 1. However, before

measurement—when a computation is being performed—a qubit can be in a

superposition of 0 and 1 states. Equation (2.1) shows the most general state of a qubit

where 1 and 0 are the basis states for an arbitrary two level quantum system (for

example spin up and down in a spin half particle).

 sin() 1 cos() 0i iq e eξ ζθ θ= + (2.1)

2.1.1 Quantum gates

To carry out a quantum algorithm, quantum computers perform unitary operations

on qubits. This is analogous to a classical algorithm being composed of ‘gates’ (AND,

OR, NOT, XOR, etc.) that act on classical bits. A straightforward example of this

analogy is the classical exclusive or (XOR) gate and the quantum controlled not (CNOT)

gate. The XOR gate is shown in Figure 1a.

The values c1 and c2 represent classical bits flowing down a wire (black line) from

left to right. They encounter the XOR gate and undergo modulo two addition (denoted

 7

Figure 1. a) An XOR gate. b) A modified XOR gate that preserves the bit c1.

by ⊕) so that the XOR gate output is 0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, and 1⊕ 1 = 0. This

is described in the truth table given in Table 1a. In Figure 1b we have created a modified

gate that preserves the bit c1. Thus, this gate has an equal number of input and output

bits. All quantum gates share this property since the number of basis vectors used to

represent ψ remains constant. Two electrons will always be spin up or down (or both)

no matter what unitary operations one performs on them, so it is impossible to create a

quantum gate with fewer outputs than inputs. Therefore, the modified XOR gate shown

in Figure 1b will be a better analogy to the CNOT gate, as we shall now see.

Table 1. a) Truth table for Figure 1a. b) Truth table for Figure 1b. Inputs are left of the gray bar, outputs
are right.

a) b)

Figure 2 shows a quantum CNOT gate. In this diagram, straight lines represent

qubit states, and time flows from left to right. Again, the symbol ⊕ denotes modulo two

addition. A truth table for this gate is shown in Table 2. Note that 2q passes

1c

2c
XOR 1 2c c⊕

1c

2c
XOR 1 2c c⊕

1c

a b

 8

unchanged as long as 1q is 0 , and 2q is changed if 1q is 1 . Thus 1q is called

the control qubit and the entire gate is called a control not gate. The truth table given in

Table 2 is the same as Table 1b, so that as long as 1q and 2q are definitely in either

state 1 or 0 the gate acts as a modified classical XOR gate. However, if either qubit

is in a superposition of 1 or 0 states, then the outputs will also be in a superposition

of states. This ability of quantum bits to be a superposition of ones and zeros at the same

time is what distinguishes quantum and classical computing.

Figure 2. Controlled not gate.

Table 2. CNOT gate truth table. Inputs are left of the gray bar; outputs are right.

The state of the entire system in Figure 2 is 1 2 1 2 q q q qψ = ⊗ = . Note that

since 1q acts as a control, it is possible for the qubits to become entangled. For

instance, if the input state of the CNOT gate is 1 0 0 0a bψ = + , which can be

factored into ()1 0 0a b+ ⊗ , the output state will be 1 1 0 0a bψ = + , which

1q

2q

1q

21 qq ⊕

 9

cannot be factored. Before application of the CNOT gate, the state of the second qubit

was independent of the first qubit, allowing ψ to be factored. However, after

application of CNOT, the state of qubit two was directly dependent on the state of qubit

one and ψ could not be factored. Thus, after the CNOT gate, the measurement of one

qubit will immediately determine the state of the other and we say the qubits are

entangled.

The CNOT gate, like all quantum gates, is a unitary operation, and can be

described in matrix form. If we choose the following to be our basis

1 0 0 0
0 1 0 0

1 1 1 0 0 1 0 0
0 0 1 0
0 0 0 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → → →
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.2)

then using Table 2, the CNOT matrix is

0 1 0 0
1 0 0 0ˆ
0 0 1 0
0 0 0 1

cnotU

⎛ ⎞
⎜ ⎟
⎜ ⎟→
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (2.3)

Returning to the problem discussed earlier, we can see that this formalism gives the same

results.

() ()ˆ 1 0 0 0 1 1 0 0

0 1 0 0 0
1 0 0 0 0

0 0 1 0 0 0
0 0 0 1

cnotU a b a b

a
a

b b

+ = +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.4)

 10

One should note that quantum computers have an exponential increase in

computational power as one adds more qubits [15]. This is because each additional qubit

doubles the number of Hilbert space dimensions so that it has 2B dimensions, where B is

the number of qubits. For instance, if we have three qubits there are 23 dimensions with

one choice of basis being

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

111 110 101 011
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0
0
0
0

001
1
0
0
0

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → → →⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟→ ⎜ ⎟
⎜
⎜
⎜
⎜⎜
⎝ ⎠

0 0 0
0 0 0
0 0 0
0 0 0

 010 100 000
0 0 0
1 0 0
0 1 0
0 0 1

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟→ → →⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (2.5)

For purposes of comparison, suppose that we had a classical computer that used

three parallel lines, each of which simultaneously transmitted a bit to a central processor.

Then at any given time the processor can compute using three bits, which we will define

to be a byte. So the classical computer can compute with one byte at a time. In contrast,

a similar quantum computer with a three qubit memory—all of which may be in a

superposition of 1 and 0 states—can compute with all eight bytes simultaneously. Of

course the number of bytes the quantum computer can handle at one time rises

 11

exponentially with additional bits. Thus, for some problems the quantum computer is

exponentially more powerful than a classical computer.

2.1.2 Measurement

After a calculation is completed, one must measure the quantum bits to get an

answer. Of course, if the output is in a superposition of states, as it is in equation (2.6)

below, then one will get a random answer weighted by the coefficients in front of each

state. For the equation below, the computer will produce the binary output 1, 1 with

probability 2a .

 1 1 1 0 01 00a b c dψ = + + + (2.6)

To avoid the embarrassment of getting different answers each time, most quantum

algorithms include steps to make the coefficients of the calculated incorrect answers go to

zero. However, the binary ones and zeros are not the only way one can code information;

it can also be saved in the magnitude of the basis coefficients. To get this information,

one must either perform the computation many times on the same computer and average

the measured results, or perform the same computation on many identical quantum

computers and average these measured results. The second method is called ensemble

Figure 3. Ensemble measurement averages the measurement results of N identical quantum computers to
obtain the magnitude of basis coefficients. The symbol with the arrow in the figure above is used in
quantum computing literature to signify the measurement of a quantum system.

N quantum computers
2

2

of computers in 11

N
of computers in 10

N

etc...

a

b

≈

≈

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +

1 1 1 0 01 00a b c dψ = + + +

 12

measurement and is how information is extracted in a Nuclear Magnetic Resonance

(NMR) quantum computer. The FQLGA takes advantage of the ability of NMR

machines to do ensemble measurement, so these computers be will discussed in more

detail in section 2.3.

For convenience, one may represent the results of an ensemble measurement

using projectors or matrices. For instance, suppose we are interested in measuring the

probability of finding the second qubit in Figure 3 in the state 1 . Then one can write

() ()2 22 2
2 1 11 01 11 11 01 01P q a c ψ ψ ψ ψ= = + = + = + . (2.7)

The far right hand side of (2.7) indicates that the probability of the second qubit being 1

is equal to 2n̂ψ ψ , where 2ˆ 11 11 01 01n ≡ + is called the number operator and is

defined to be the sum of those projectors whose second qubit is 1 . Using the basis

given in (2.2), we can rewrite the number operator in matrix notation:

 2

1 0 0 0
0 0 0 0

ˆ 11 11 01 01
0 0 1 0
0 0 0 0

n

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ + →
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (2.8)

Similarly, the probability of finding the first qubit in 1 is equal to 1̂nψ ψ where

 1

1 0 0 0
0 1 0 0

ˆ 11 11 10 10
0 0 0 0
0 0 0 0

n

⎛ ⎞
⎜ ⎟
⎜ ⎟≡ + →
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (2.9)

 13

Note that 1̂n and 2n̂ are not unitary and therefore do not represent operations that can be

performed by a quantum computer. Rather, they are convenient notations allowing one

to predict the results of an ensemble measurement.

2.2 Quantum algorithms

A quantum algorithm consists of a series of unitary transformations performed on

qubits followed by a measurement designed to perform a computation. To this date, the

types of quantum algorithms developed generally fall into three categories: Fourier

transform, search, and simulation algorithms [15].

The Fourier transform algorithm is the backbone of Shor’s factoring and discrete

logarithm algorithms, and it involves taking the Fourier transform of a set of numbers:

{ 0 2 1
,... nx x

−
 } to get a new set: { 0 2 1

,... ny y
−

}. Suppose one prepares a state,

2 1

0

n

j
j

x jψ
−

=

= ∑ , so that the coefficients jx of the basis states are the numbers one wishes

to transform. Then one may define a unitary transformation such that

2 1

2 / 2

0

1
2

n
nijk

n
k

j e kπ
−

=

→ ∑ . (2.10)

If this transformation is performed on ψ , we see that the new coefficients are the

Fourier transformed set { 0 2 1
,... ny y

−
}, which we wanted.

2 1 2 1 2 1 2 1

2 / 2

0 0 0 0

1
2

n n n n
nijk

j j kn
j k j k

x j e x k y kπ
− − − −

= = = =

⎡ ⎤
→ =⎢ ⎥

⎣ ⎦
∑ ∑ ∑ ∑ (2.11)

Of course one cannot simply read off the coefficients yk. If one tried, the wave

function would collapse into a random collection of bits. It takes an additional amount of

 14

cleverness and a few more quantum logic gates to get useful information from this

transformation. Nevertheless, this algorithm can complete the transform in about n2 steps

as opposed to the classical n2n steps (for 2n numbers) [16]—an exponential speedup!

Grover’s search algorithm is an example of the second kind of quantum

algorithm—the search algorithm. Grover’s algorithm is designed to search a space of

size n, looking for an element in it with some desirable attributes, with no information

about the structure of the space. Classically, this problem requires about n steps while

the quantum algorithm can accomplish it in about n steps [17].

Finally, simulation algorithms can be used to model physical (typically quantum)

systems. Quantum computers are ideal for this task because their Hilbert space increases

exponentially with the number of qubits involved. If the system we are attempting to

model is quantum mechanical and has n components, then in general it takes cn bits of

memory on a classical computer to model it, where c is some constant associated with the

details of the system. On the other hand, a quantum computer only requires k n qubits to

model the system, where again k is a constant that depends on the system [15]. Though

simulation algorithms intended for quantum computers are typically designed to model

quantum systems, they can also model classical systems. The Factorized Quantum

Lattice Gas Algorithm is an example of a quantum algorithm designed to model a

classical system.

2.3 Physical quantum computers

Due to the enormous challenge associated with isolating and precisely controlling

single particles, quantum computers are currently incapable of rivaling their classical

 15

counterparts. Quantum computers come in two varieties called type I and type II. Type I

machines are ‘pure’ quantum computers and utilize a number of qubits, each of which

can be entangled with any other using an arbitrary unitary transformation. Type II

machines are not as powerful but are easier to create in practice. They consist of a

number of small type I quantum computers (called nodes) with as few as two qubits in

each, connected by classical communications channels carrying bits instead of qubits

[18]. Figure 4 shows a simple diagram of a type-II computer.

Figure 4. Type-II quantum computer.

The four most developed technologies for quantum computing are optical

techniques, ion traps, neutral atom traps, and nuclear magnetic resonance. One of the

most significant problems for each of these technologies is decoherence. Decoherence is

the uncontrolled entanglement of a system with its environment, destroying the

superposition of qubit states within the system and losing the information it contains [19].

The time it takes for this process to occur, called the decoherence time, is very short in

most systems and therefore limits the number of operations that can be performed on a

 16

given number of qubits. Table 3 lists the various decoherence times (tQ) of some of the

systems under investigation, along with the time it takes to perform an operation (top) on

the system [15]. This gives a general idea of the number of operations that can be

performed on the system (nop) before quantum information is lost.

Table 3. Estimates for the decoherence time tQ, operation time top, and maximum number of operations nop
for quantum computer candidates [15].

Given the long decoherence times of nuclear spins, it is not surprising that the

most advanced quantum computers rely on encoding quantum information in atoms with

spin half nuclei using NMR technology. This is done by placing a liquid sample in a

magnetic field around 10 T, splitting the nuclear spin energy levels with a sort of Zeeman

shift. Radio frequency pulses can then be used to manipulate the nuclear states.

Figure 5. The molecule used by Pravia et al [6] in their implementation of a type II NMR quantum
computer was 13C-Chloroform, with hydrogen and carbon 13 nuclear spins serving as the qubits. The
energy levels of the nuclear spin states are split using a strong magnetic field.

 17

A basic description of a type-II NMR quantum computer is shown in Figure 5 and

Figure 6. The nucleons that act as qubits are in the molecules that make up a liquid

sample—in effect each molecule is a small quantum computer. Radio frequency pulses

are used to perform unitary transformations on the qubits in the sample. Since the sample

contains some 1023 identical molecules, using a NMR quantum computer amounts to

performing the same calculation on 1023 quantum computers. Therefore, when one

measures the state of a particular qubit, one does it for the entire sample and gets an

average value of the state. This is an example of an ensemble measurement discussed in

section 2.2.

Figure 6. Basic schematic of type-II NMR quantum computer. The gradient coil creates a gradient in the
magnetic field so that the nuclear spin energy levels are shifted by different amounts depending on their
physical location in the liquid sample. This allows the RF coil to address different parts of the liquid
sample with different frequency radio pulses. Each group of molecules that the RF coil can address with
one set of frequencies is a node in a type II quantum computer. In each node there are many molecules that
are manipulated simultaneously, so that measuring a node is an example of ensemble measurement. This
figure was used with permission from [6].

 18

To make a NMR machine a type-II quantum computer, the liquid sample is

effectively split into nodes using a magnetic field gradient. This gradient splits the

nuclear spin states by different amounts depending on a molecule’s location in the liquid

sample, allowing one to address different sections of the sample with different frequency

radio pulses.

The FQLGA has two properties that make it ideal for implementation on a type II

NMR quantum computer. First, it requires no more than three entangled qubits, making

it possible to run the algorithm on a type II computer with three qubits per node. NMR

machines with three qubits per node have already been successfully demonstrated using

Alanine, Trifluorobromoethylene, and Trichloroethylene [15]. Secondly, this algorithm

stores information in the probability coefficients of the basis states. This information can

be obtained by an ensemble measurement over all the molecules in a node of a NMR

machine.

3 Fluid Dynamics

Since the factorized quantum lattice gas algorithm models fluid dynamics, it is

worthwhile to briefly review this subject along with the classical lattice gas algorithms

that inspired their quantum counterparts. This section starts with a brief overview of

fluid dynamics before discussing classical lattice gas and lattice Boltzmann algorithms.

3.1 Navier-Stokes fluids: macroscopic scale

The following section follows Landau and Lifshitz [20], Yepez [4], and Buick

[21]. The long wavelength hydrodynamic behavior of a fluid at the macroscopic scale

can be modeled by a set of coupled partial differential equations. These equations model

 19

mass density (ρ) and flow velocity (u) fields, and are called the continuity and Navier-

Stokes equations.

Since the fluid mass change in a region ℜ comes from the fluid flux through the

boundary ∂ℜ , ρ and u must obey

 () 0t i iuρ ρ∂ + ∂ = (3.1)

which is the continuity equation. Here the shorthand /t t∂ = ∂ ∂ and /i ix∂ = ∂ ∂ is used,

along with Einstein indicial notation, which implies summation over repeated indices.

The field equation for Newton’s second law, which expresses the change in the

momentum density in terms of the stress at the boundary of the region ∂ℜ , is Euler’s

equation

 () 0t i j ijuρ∂ + ∂ Π = (3.2)

where the momentum flux density tensor can be written

 (,) 'ij ij i j ijP t u uρ δ ρ σΠ = + − . (3.3)

The first two terms are the ideal parts of the momentum flux density tensor, which are

the pressure term (,)P tρ and the convective term uuρ . The pressure term is diagonal

because the fluid is isotropic. The last term is the stress tensor, equal to

2' ()ij i j j i k k ij ij k kDu u u uσ η δ ζδ= ∂ + ∂ − ∂ + ∂ , where η is the shear viscosity, ζ is the bulk

viscosity, and D is the number of spatial dimension of the system.

Substituting (3.3) into Euler’s equation gives the Navier-Stokes equation

 () 2
t i j j i i i i j ju u u P u u

D
ηρ ρν ζ⎛ ⎞∂ + ∂ = −∂ + ∂ + + ∂ ∂⎜ ⎟

⎝ ⎠
 (3.4)

 20

where η
ρν ≡ is the kinematic viscosity. This equation has known solutions in only a few

simple cases, and computer modeling with various numerical techniques are typically

necessary to solve this equation for more complex flows.

The kinematic viscosity ν is a measure of the rate of decay of local shears in a

fluid, and determines how fast a fluid will relax from an anisotropic to an isotropic flow

field. The shear viscosity alone is responsible for the damping of shear waves in the

momentum density field, while both the shear and bulk viscosities cause damping of

compression waves in the mass density field.

L and T are the characteristic length and time scales of a fluid fluctuation.

Examples of the characteristic length for a hydrodynamic flow are the wavelength of a

compression wave in the mass density field, the wavelength of a shear wave in the

momentum density field, or the diameter of a vortex. Examples of characteristic times

are the period of a wave, or the rotation period of a vortex. The mean free path (λ) and

time (τ) are the average distance and time that microscopic particles in the fluid travel

before colliding. Two important speeds are the characteristic flow speed υ ~ L
T and

sound speed c λ
τ= .

Relevant dimensionless numbers are: the Knudsen number (Kn) defined as the

ratio of the mean free path to the characteristic length, the Strouhal number (Sh) defined

as the ratio of the mean free time to the characteristic time, Mach number (M) defined as

the ratio of the characteristic velocity and sound speed, and Reynolds number (Re)

defined as the product of the characteristic velocity and the characteristic length divided

by the kinematic viscosity. A list of all these relevant quantities is given in Table 4.

 21

Table 4. List of relevant quantities in fluid dynamics.

 Symbol Name Description
ρ mass density field scalar field that describes the fluid mass density
u flow velocity field vector field that describes the fluid velocity
η shear viscosity causes damping of compression waves in mass density

field and shear waves in momentum density field
ζ bulk viscosity causes damping of compression waves in mass density

field
ν kinematic viscosity /η ρ≡ , determines how fast perturbed fluid will relax
L characteristic length length of fluid perturbations
T characteristic time period of fluid perturbations
λ mean free path particles’ average distance between collisions
τ mean free time particles’ average time between collisions
υ characteristic speed /L T∼
c sound speed /λ τ∼

Kn Knudsen number / Lλ≡
Sh Strouhal number /Tτ≡
M Mach number / cυ≡
Re Reynolds number / /L M Knυ ν≡ ∼

Returning to equation (3.4), one can see that the one dimensional Navier-Stokes

equation simplifies to

2

2 u u uu
t x x

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 (3.5)

if 0Pη ζ= = = . This is a simplified model of turbulence and shock formation called the

Burgers equation [22]. In section 4, we will see that the two qubit Factorized Quantum

Lattice Gas Algorithm is capable of accurately modeling this equation.

3.2 Classical lattice gas algorithm: microscopic scale

In the 1980’s a class of algorithms called Lattice Gas Algorithms (LGA) were

discovered to behave like a Navier-Stokes fluid by Wolfram [23] and by Frisch,

Hasslacher, and Pomeau [24], raising the possibility of using massively parallel

computers running LGAs to simulate fluid dynamics. These simulations may include

 22

attractive interactions between particles to create multiphase fluids [25] or fixed obstacles

to simulate vortex shedding [26].

Lattice gas algorithms move virtual particles along an imaginary lattice and

change the particles’ momentums using collision rules when they meet at a lattice node.

The lattice node spacing () is defined to be a microscopic scale length so that LGAs are

sometimes said to model fluids at this scale. In fact, lattice gas algorithms grossly

oversimplify microscopic particle dynamics. However, this turns out not to matter since

the macroscopic behavior of a fluid does not depend directly on its microscopic

components. This is evident in experiments carried out using wind tunnels and water

tanks with low Mach flows and similar Reynolds numbers, since the results of both types

of experiments will be similar [21]. Similarly, LGAs in the continuum limit (with very

small) turn out to be accurate models of fluid dynamics.

The simulated particles in a lattice gas algorithm are located on the nodes of a

regular lattice. The position and momentum of each particle is specified by its position

on the lattice and a displacement vector. The displacement vector points in the direction

that the particle will move at the beginning of a time step. Particles move from one node

to another in a process called streaming. In the case of a single speed lattice gas, all

particles move at the same velocity c τ= , where is the distance between lattice sites

and τ is the time step interval [23]. All of the particles stream simultaneously at the

beginning of a time step. Most LGAs enforce an exclusion principle so that no more than

one particle can occupy a state at a given time, though there is usually more than one

particle at a lattice node. A state is defined as the location and momentum of a particle.

 23

Each state is typically assigned a bit, so that the bit of a full particle state is 1 and 0 for an

empty state.

When two or more particles meet at a lattice node, their momentums change in

accordance with predetermined collision rules. The updated particle trajectories are then

streamed at the beginning of the next time step. This process is shown in Figure 7, with

particle trajectories at the beginning of a time step labeled by single arrows while the

trajectories at the end of the time step are labeled by double arrows.

Figure 7. Triangular classical lattice gas developed by Frisch, Hasslascher, and Pomeau. Particles at time t
are marked with a single arrow; those at the next time step t τ+ are marked with double arrows. Figure is
reproduced from [24].

3.3 Classical lattice Boltzmann algorithm: mesoscopic scale

To transition from the microscopic scale Classical Lattice Gas Models, which

contain a number of discrete particles, to the macroscopic scale Navier-Stokes equation,

which contains a continuous density parameter r, it is necessary to convert the number of

particles in a given area to a particle density. In other words, particle number must be

replaced by a continuous statistical particle distribution function. This is analogous to

 24

describing the motion of a group of microscopic molecules in a fluid by modeling a

mesoscopic statistical particle distribution, called the Boltzmann distribution (, ,)f x u t ,

that is a function of position, velocity, and time.

Boltzmann mechanics can be described following Gurnett and Bhattacharjee [27],

where we consider a group of particles 3 3(, ,)f x u t d xd u in the phase space volume

element 3 3d xd u at time t. These particles’ positions will change to x x uτ′ = + and their

velocities to F
mu u τ′ = + an instant later at time t τ+ , so that they occupy a new volume

in phase space: 3 3d x d u′ ′ . Or in other words,

 3 3 3 3(, ,) (, ,)F
mf x u u t d x d u f x u t d xd uτ τ τ ′ ′+ + + = . (3.6)

Any change in the particles distribution that equation (3.6) does not account for must be

due to collisions ()fΩ , so that1

 3 3 3 3(, ,) (, ,) ()F
mf x u u t f x u t d xd u f d xd uτ τ τ τ+ + + − = Ω⎡ ⎤⎣ ⎦ . (3.7)

Expanding this result in a Taylor series and taking the limit that τ is zero, one arrives at

the well known Boltzmann Equation

 ()u
f Fu f f f
t m

∂
+ ⋅∇ + ⋅∇ = Ω

∂
 (3.8)

In contrast, if we reconsider the discrete space-time of a lattice gas algorithm and set

external forces equal to zero, equation (3.7) becomes the finite difference equation

 (,) (,) ()u u uf x u t f x t fτ τ+ + − = Ω (3.9)

1 The Jacobian of the change in the phase space volume 3 3 3 3Jd xd u d x d u′ ′= is equal to one.

 25

where we now choose to index f by the velocity u . This is called the lattice Boltzmann

equation.

There are two methods of modeling this mesoscopic equation. The first approach

is to directly simulate the equation on a lattice using continuous values for the particle

occupation of a state instead of the binary 1 for “particle present” and 0 for “no particle.”

Algorithms that follow this approach are called lattice Boltzmann algorithms. The

second approach is to model discrete microscopic particles on a lattice gas simulation.

The governing lattice Boltzmann equation is then derived as an approximate description

of the averaged mesoscopic dynamics [21].

One way to average over the lattice is called coarse grain averaging and works by

placing a mesoscopic “superlattice” over the microscopic lattice as shown in Figure 8a,

and taking the average occupation probability as the value of f at a particular superlattice

site. The second method takes an ensemble average of many independent microscopic

Figure 8. a) Coarse grain averaging works by taking the average over all the microscopic states inside the
mesoscopic superlattice. b) Ensemble averaging works by taking the average over many independent
microscopic realizations to obtain the particle distribution at each site.

 26

realizations to arrive at a value for f. The factorized quantum lattice gas algorithm uses

the second method to obtain the distribution f.

To transition from a discrete (in space) mesoscopic scale simulation to a

continuous macroscopic scale Navier-Stokes simulation one must let the lattice cell size

approach zero in the continuum limit as shown in Figure 9. In this limit, it is possible to

perform a Chapman-Enskog expansion to derive the macroscopic governing equation of

the fluid [24].

Figure 9. Decreasing the mesoscopic lattice cell size towards zero increases the simulation resolution and,
in the continuum limit, will approximate a continuous macroscopic field.

When performing this expansion, one should note that the particles in a lattice gas

algorithm undergo random walk. That is, a tagged particle will move a distance which

asymptotically approached L = 2 /n π after streaming 2n times. Since particles stream

at the end of every time step, 2n τ = T. This implies that in random walk processes Sh ~

Kn2 ~ 2 2(1/)n ε≡ —a condition called diffusive ordering, which produces viscous

hydrodynamic behavior [5, 28]. This will become important as the Chapman-Enskog

analysis is described in further detail in the next section.

 27

4 Factorized Quantum Lattice Gas Algorithm

As discussed in section 2.3, type II NMR quantum computers are well suited to

simple algorithms that requires massive parallelism. LGAs fit this description well, and

it was this observation that lead Yepez [2-5] to develop the factorized quantum lattice gas

algorithm (FQLGA) to test the modeling utility of quantum computers. The algorithm is

called “factorized” because it is not meant to run on a fully coherent computer, but rather

on one that is made up of many smaller quantum computers. Constant measurement of

the system allows one to transfer classical information between the smaller quantum

computers so that the system need not be fully coherent.

Figure 10. The 1-D factorized quantum lattice gas model developed by Yepez. Each lattice site is
simulated by a node on a type II NMR quantum computer. The probability of finding a particle moving
right at lattice site l is given by qubit 1 in node l, and the probability of finding a particle moving left at that
lattice site is given by qubit 2. Since there are many computers per node in a type II NMR machine, one
can perform an ensemble measurement on each node to obtain the probabilities that will be streamed via
classical communications channels to neighboring nodes.

The FQLGA is similar to a classical LGA in that it simulates particles moving

along a lattice as shown in Figure 10. As in a classical LGA, the particles move via

streaming and obey collision rules when two particles meet at a node. However, unlike a

classical LGA, the collision rules are unitary operations which mix those states at a lattice

site. Following the collision operation, the updated probabilities for particles moving

right (particle 1) and left (particle 2) are obtained via ensemble measurement. These

updated probabilities are classically streamed to nearest neighbor lattice sites, marking

the end of a time step. Since the collision operator will only mix those states at a given

lattice site, each lattice site can be simulated by a node on a type II quantum computer.

Thus, the 1-D FQLGA developed by Yepez with two particles per lattice site (moving

 28

right and left) requires a type II quantum computer with two qubits per node. This entire

process is described in more detail in the following section.

4.1 The four steps process for the FQLGA

4.1.1 Step 1: computational memory state encoding

The first step in the FQLGA is to encode the computational memory state for the

two qubits 1(,)lq x t and 2 (,)lq x t , representing particles 1 and 2 at the lattice site l

(located at lx), at time t. At time to, the probabilities are given by initial conditions

provided by the user. Subsequent probabilities are determined by the algorithm. The

probability for particle m to exist at a lattice site located at lx at time t is written

(,)m lp x t , so that the mth qubit is encoded as

 (,) (,) 1 1 (,) 0m l m l m lq x t p x t p x t= + − . (4.1)

Here the basis state 1 means a particle exists in the simulated state and 0 means it

doesn’t. The state of the entire node is called the local state and is given by the tensor

product of the qubits 1(,)lq x t and 2 (,)lq x t . It has the form

1 2

1 2 1 2

1 2 1 2

(,) (,) (,)

11 (1) 10

(1) 01 (1)(1) 00

l l lx t q x t q x t

p p p p

p p p p

ψ = ⊗

= + −

+ − + − −

 (4.2)

where I have dropped the explicit time and position dependence of (,)m lp x t for

convenience, and the labels inside the kets are ordered for particles 1 and 2. Note that I

 29

have assumed the qubits are distinguishable since the local ket is neither symmetric nor

antisymmetric1.

4.1.2 Step 2: collision

Following memory state encoding the local state undergoes unitary evolution.

This is analogous to the collision operator in the classical LGA and is therefore labeled

Ĉ . Thus, the local state becomes

 ˆ'(,) (,)l lx t C x tψ ψ= . (4.3)

If we use the basis in (2.2) and choose a collision operator that conserves particle number

then the operator will be block diagonal and have the form

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

i i i i

i i i i

e e e e
e e e e

σ ξ σ φ

σ φ σ ξ

θ θ
θ θ− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟−
⎜ ⎟
⎝ ⎠

. (4.4)

The block that mixes the states 10 and 01 is a U(2) matrix.

4.1.3 Step 3: measurement

This step destroys the quantum superposition and measures the probability of

each qubit to be in the state 1 . As discussed in section 2.1.2, this probability can be

obtained via an ensemble measurement, and for convenience may be expressed as

 ˆ' (,) '(,) '(,)m l l m lp x t x t n x tψ ψ= (4.5)

1 This is reasonable since one designs a quantum computer so that its qubits are distinguishable. For

instance, the nucleons chosen to represent qubits have different spin energy levels in a NMR computer.

 30

where the operators ˆmn are given in (2.8) and (2.9). Notice that the equation

 ˆ(,) (,) (,)m l l m lp x t x t n x tψ ψ= (4.6)

also holds. This is of no consequence now but will be useful later.

4.1.4 Step 4: streaming

Each lattice site is updated following steps 1 through 3 and the resulting

probabilities are streamed to the adjacent lattice sites via classical communications

channels so that

 (,) ' (,)m l m m lp x e t p x tτ+ + = (4.7)

where e1 = 1 for the right streaming qubit, e2 = -1 for the left streaming qubit, and is the

lattice spacing. This signals the end of a time step t, after which the entire process is

repeated. The simulation will include many time steps and is typically completed when

the system reaches equilibrium and exhibits no further change.

4.2 Quantum lattice Boltzmann equation

By simple substitution, all four steps in the FQLGA can be encapsulated in one

equation. This is carried out as follows:

†

(,) ' (,)
ˆ'(,) '(,)
ˆ ˆˆ(,) (,) .

m l m m l

l m l

l m l

p x e t p x t
x t n x t

x t C n C x t

τ
ψ ψ

ψ ψ

+ + =

=

=

 (4.8)

With a few modifications, this equation becomes the finite difference quantum

lattice Boltzmann equation, analogous to the classical equation (3.9). The first step is to

 31

reinterpret the probabilities (,)m lp x t as a mesoscopic Boltzmann field (,)m lp x t ≡

(,)m lf x t . Therefore, equation (4.6) can be rewritten

 ˆ(,) (,) (,)m l l m lf x t x t n x tψ ψ= (4.9)

and the result of (4.8) can be rewritten

 †ˆ ˆˆ(,) (,) (,)m l m l m lf x e t x t C n C x tτ ψ ψ+ + = . (4.10)

Then all that is left to do is to subtract equation (4.9) from (4.10) so we obtain

 ()†ˆ ˆˆ ˆ(,) (,) (,) (,)

()
m l m m l l m m l

m

f x e t f x t x t C n C n x tτ ψ ψ

ψ

+ + − = −

= Ω
 (4.11)

This is the quantum lattice Boltzmann equation. This can be further expanded by

inserting the vectors for (,)lx tψ and (,)lx tψ along with the matrices for Ĉ and ˆmn

into (4.11). With much algebraic manipulation [12], the collision function becomes

[]()2
1,2 2 1 1 2 1 1 2 2sin (1) (1) sin(2)cos() (1) (1)f f f f f f f fθ θ φ ξΩ = − − − + − − −∓ (4.12)

or, written more simply

 ()2
1,2 1 2 1 1 2 2sin () sin(2)cos() (1) (1)f f f f f fθ θ φ ξΩ = − + − − −∓ . (4.13)

4.3 Chapman-Enskog expansion

As mentioned in section 3.3, one can derive the macroscopic governing equation

in the continuum limit of the lattice by performing a Chapman-Enskog expansion of the

lattice Boltzmann equation. This section will follow Yepez [4, 10] to derive the

macroscopic equation for his model.

 32

The Chapman-Enskog expansion works by taking a Taylor series expansion of the

lattice Boltzmann equation around local equilibrium. In physical systems, local

equilibrium is the state where particles are in thermodynamic equilibrium with one

another across mesoscopic or microscopic scale lengths. In classical lattice Boltzmann

and quantum lattice gas algorithms, local equilibrium is obtained at a lattice site when the

collision function no longer changes the particle distribution at that site.

We expand around local equilibrium because at the mesoscopic scale, most

systems are at, or very near to, thermodynamic equilibrium. It is only at the macroscopic

scale that there are free thermodynamic variables such as local density, temperature, and

momentum. Thus, a macroscopic description of a fluid comes from a patchwork of

slowly varying systems at or very near equilibrium [24].

The dimensionless numbers Kn (Knudsen number), Sh (Strouhal number), and Re

(Reynolds number) discussed in section 3.1 can be used to determine how close a system

is to equilibrium—at equilibrium these numbers vanish. For instance, at equilibrium the

characteristic length scale is infinitely large compared to mean free path, so Kn ~ 0.

However, hydrodynamic behavior is also attained in the long wavelength limit where

these numbers are close to zero. Thus, it should be of no surprise that expanding the

lattice Boltzmann equation around local equilibrium should result in hydrodynamic

behavior.

In the following section the local equilibrium value of fm is derived. In section

4.3.2 this result is used in the Chapman-Enskog expansion of the quantum lattice

Boltzmann equation.

 33

4.3.1 Local equilibrium

For simplicity, we will label the equilibrium values of fm as dm. Local equilibrium

is defined as the condition where (,) (,) 0m l m m ld x e t d x tτ+ + − = ; that is, when

collisions cause no further change in the distribution function fm. From this we can see

that
1,2 1,2

| 0m f d=Ω = , or from (4.12)

[]2
2 1 1 2 1 1 2 2sin (1) (1) sin(2)cos() (1) (1) 0d d d d d d d dθ θ φ ξ− − − + − − − = (4.14)

Dividing this equation by 1 2(1)(1)d d− − and rearranging we get

 1 2 1 2

2 1 1 2

2cot() cos()
(1) (1) (1) (1)

d d d d
d d d d

θ φ ξ− = −
− − − −

. (4.15)

Taking the equilibrium probabilities to have the form

 1
1

1
d

zγ
=

+
 and 2

1
1z

d
γ

=
+

. (4.16)

and substituting this into (4.15) with some manipulation gives the quadratic equations

 2 2 1 0γ αγ+ − = (4.17)

where cot cos()α θ φ ξ≡ − . We take the positive root solution of this (so that dm will be

positive) so that

2

2

1
1 1 .

γ α α

α α
γ

= + +

= + −
 (4.18)

Noting that the total number density at a lattice site is 1 2d d ρ+ ≡ and substituting (4.16)

and (4.17) into this expression, we obtain a quadratic equation in z

 2 1 (1) (2) 0z zρ γ ρ ρ
γ

⎛ ⎞
+ + − + − =⎜ ⎟
⎝ ⎠

. (4.19)

 34

When the positive root solution of (4.19) along with (4.17) is substituted into (4.16) one

finally arrives at

 ()2 2 2
1,2

1 1 1 (1)
2 2

d ρ α α ρ
α

= + − + −∓ (4.20)

which are the equilibrium values for the two qubit quantum lattice Boltzmann equation.

4.3.2 Taylor series expansion around local equilibrium

To keep track of the order of the expansion, one uses a “smallness parameter” ε .

This is defined to be on the order of the Knudsen number: Kn = / L ~ε . Like the

classical lattice gas algorithm, the factorized quantum lattice gas algorithm obeys

diffusive ordering. Therefore, 2ε must be on the order of the Strouhal number Sh =

T
τ ~ 2ε [4]. The QLBE can thus be written

 2(,) (,)m l m m l mf x e t f x tε ε τ+ + − = Ω . (4.21)

With this we can now find the Taylor series of the left side of (4.21), which is

just the quantum lattice Boltzmann equation rewritten to include ε . This gives

2

2 2 2 2 3
2

1 ()
2

m m m
m m m

f f fe e
t x x

ε τ ε ε ε∂ ∂ ∂
+ + +Ο = Ω

∂ ∂ ∂
. (4.22)

We did not expand the right hand side of (4.21) because it turns out to be easier in the end

not to. Notice that the equation is still exact, since we implicitly keep higher order terms

in the factor 3()εΟ .

The crucial ansatz is to now assume that mf can be expanded around local

equilibrium as the sum of md and a small deviation mfδ , which may in turn be expanded

in powers of ε :

 35

 (0) 2 (1) 3()m m m mf d f fεδ ε δ ε= + + +Ο . (4.23)

Inserting this into (4.22) and explicitly writing out only those terms up to second order in

ε we obtain

(0) 2

2 2 2 2 2 3
2

1 ()
2

m m m m
m m m m

d d f de e e
t x x x

δε τ ε ε ε ε∂ ∂ ∂ ∂
+ + + +Ο = Ω

∂ ∂ ∂ ∂
. (4.24)

This is the QLBE expanded around equilibrium. However, we do not have an

expression for (0)
mfδ . To obtain one, we take the first moment of the QLBE and solve for

(0)
mfδ . First, expand

1,2 1,2

1,2 1,2

(0) 2()m
m m nf d

n n f d

f
f

ε δ ε
=

=

∂Ω
Ω = Ω + +Ο

∂∑ . (4.25)

Note that the first term in this expression is equal to zero from the definition of local

equilibrium. Equating like powers of ε , the first moment of (4.21) is therefore

1,2 1,2

(0)m m
m n

n n f d

de f
x f

ε ε δ
=

∂ ∂Ω
=

∂ ∂∑ . (4.26)

From equation (4.13) we see that 1 2Ω = −Ω ≡ Ω . Then, for simplicity, equation

(4.26) can be rewritten in vector form

 (0)ˆˆ de J f
x

ε ε δ∂
=

∂
 (4.27)

where the vectors d
x

∂
∂ and (0)fδ are

1

2

d
xm

d
x

d
x

∂
∂

∂
∂

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂ ⎝ ⎠

 and
(0)

(0) 1
(0)

2

f
f

f
δ

δ
δ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (4.28)

and the matrices Ĵ (the Jacobian) and ê are

 36

 1 2

1 2
1,2 1,2

1 2

1 2

ˆ f f

f f f d

J J
J

J J

∂Ω ∂Ω
∂ ∂

−∂Ω −∂Ω
∂ ∂

=

⎛ ⎞ ⎛ ⎞
= ≡⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠⎝ ⎠

 and
1 0

ˆ
0 1

e
⎛ ⎞

= ⎜ ⎟−⎝ ⎠
. (4.29)

Solving for (0)fδ is not as easy as finding the inverse of Ĵ , however, because

this matrix is singular. Yepez utilizes two (equivalent) methods to find a consistent

(0)fδ [10]. The first is to multiply both sides of (4.27) by Ĵ . The second method is to

multiply both sides of (4.27) by a “generalized inverse” 1ˆ
genJ − , which Yepez has invented.

This matrix is similar to the Moore-Penrose pseudoinverse [29].

The eigenvalues and left and right eigenvectors of Ĵ are

()

()

2
1 1 1

11 2

2 1 2 2 1 2 2
2 1

10 1 1 E

11 E
1

J
E

JJ J

J J E J J
J J

λ

λ

⎛ ⎞
= = = ⎜ ⎟−− ⎝ ⎠

⎛ ⎞
= − = = ⎜ ⎟−− ⎝ ⎠

 (4.30)

where the right eigenvectors (often simply called eigenvectors) satisfy ˆ
m m mJ E Eλ= ,

the left eigenvectors satisfy ˆ
m m mE J Eλ= , and the eigenvector lengths are selected so

that m n mnE E δ= . From this we see that Ĵ is

 1 2
1 1 1 2 2 2 2 2 2

1 2

ˆ J J
J E E E E E E

J J
λ λ λ

⎛ ⎞
= + = = ⎜ ⎟− −⎝ ⎠

 (4.31)

since 1 0λ = . This equation is analogous the spectral decomposition of a Hermitian

matrix, and is equivalent to square matrix diagonalization. Any n by n square matrix M

with n independent eigenvectors can be diagonalized using 1− =S MS Λ [30]. The

columns of S are the right eigenvectors of M, Λ is a diagonal matrix with corresponding

 37

eigenvalues, and the rows of 1−S are the left eigenvectors of M since m n mnE E δ= .

Therefore 1−=M SΛS is equivalent to (4.31).

From (4.31), it is clear that

 2 2
2 2 2 2

ˆ ˆ.J E E Jλ λ= = (4.32)

As was mentioned, the first method Yepez uses to find (0)fδ is to multiply both sides

of (4.27) by Ĵ . Then one obtains

2 (0)

(0)
2

(0)
2

(0)

2

ˆ ˆˆ

ˆ ˆˆ

 which implies

ˆ

1 ˆ .

dJ e J f
x
dJ e J f
x

de f
x
de f
x

δ

λ δ

λ δ

δ
λ

∂
=

∂

∂
=

∂

∂
=

∂

∂
=

∂

 (4.33)

The second (and equivalent) method Yepez uses is to multiply both sides of (4.27)

by his generalized inverse. The generalized inverse is analogous to the inverse of a

nonsingular square matrix 1 1 1− − −=M SΛ S . Yepez uses an identical construction for his

generalized inverse except that he replaces 1−Λ with a matrix, 1
gen
−Λ , in which only the

nonzero diagonal components are inverted. The procedure for constructing the Moore-

Penrose pseudoinverse is similar, except the vectors which make up 1−S and S are the left

and right eigenvectors of †MM . It can be shown that when M is invertible, the least

squares solution for =Mx b is 1
psuedo
−=x M b , where 1

psuedo
−M is the Moore-Penrose

pseudoinverse [30].

 38

Yepez’s generalized inverse for Ĵ is

 ()1
2 2 2 2 22 2

2 2 2

1 1 1ˆ ˆ
genJ E E E E Jλ

λ λ λ
− = = = . (4.34)

Multiplying both sides of (4.27) from the left by this generalized inverse, one obtains

1 1 (0)

2 (0)
2 2
2 2

2 (0)

ˆ ˆ ˆˆ

1 1ˆ ˆˆ

ˆ ˆˆ

gen gen
dJ e J J f
x
dJ e J f
x
dJ e J f
x

δ

δ
λ λ

δ

− −∂
=

∂

∂
=

∂

∂
=

∂

 (4.35)

which may be further simplified following the same steps given in (4.33). Thus, the two

methods are equivalent. If one takes the solution obtained in (4.33) and substitutes it into

(4.24) one arrives at

2
2 2 2 2 2 2 2 32

2 2
2 2

1 1 1 ()
2

m m m m
m m m m

d d d de e e
t x x x x

λε τ ε ε ε ε
λ λ

⎛ ⎞∂ ∂ ∂ ∂∂
+ + + + +Ο = Ω⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

(4.36)

The next step is to sum these equations over m, noting that 1 2d d ρ+ ≡ , and

2
me =1. This gives

2 2

2 2 2 2 32
1 2 2 2

2 2

1 1() () 0
2

d d
t x x x x

λρ ρ ρε τ ε ε ε ε
λ λ

⎛ ⎞∂∂ ∂ ∂ ∂
+ − + + + +Ο =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

. (4.37)

In what follows, Yepez restricts himself to small α to simplify the resulting equations.

That is, he assumes that the angles θ , φ , and ξ in the collision operator are such that

cot cos() 1α θ φ ξ= − << . Then, using the equilibrium values (4.20), the second term in

(4.37) is

 39

()
()

()

2 2 2
1 2

1/ 22 2

2

1() 1 1 (1)

(1) 1 (1)

(1) 1 ()

d d
x x

x

x

ε ε α α ρ
α

ρε α ρ α ρ

ρε α ρ α

−

∂ ∂ ⎡ ⎤− = − + − + −⎢ ⎥∂ ∂ ⎣ ⎦
∂

= − − + −
∂

∂
= − +Ο

∂

 (4.38)

where the Taylor series expansion of () 1/ 22 21 (1)α ρ
−

+ − with respect to α was taken in

the last line. Calculating the components of J one obtains

 1,2 2,1 2,12
1,2

1 1 2 2

(2 1) (1)
sin 1

(1) (1)
d d d

J
d d d d

θ α
⎛ ⎞− −

= −⎜ ⎟⎜ ⎟− −⎝ ⎠
∓ . (4.39)

This implies that

 2 2
2 1 2 2sin (1 (,))J J fλ θ α α ρ= − = − + (4.40)

where (,)f α ρ is very complicated but has the important property that

(,) 1 ()f α ρ α= +Ο . The resulting equation is

2 2

2 3 2
2cot cos()(1) cot (,)

t x x
ρ ρ ρθ φ ξ ρ θ ε εα

τ τ
∂ ∂ ∂

+ − − = +Ο
∂ ∂ ∂

 (4.41)

Dropping the terms implicit in 3 2(,)ε εαΟ one obtains a partial differential equation that

models the FQLGA in the continuum limit of the quantum lattice Boltzmann equation

(4.11), accurate to first order in time and second order in space for small α .

For (1)su c ρ= − where cot cos()sc τ θ φ ξ= − is the speed of sound and

221
2 cot τν θ= is the kinematic viscosity, equation (4.41) becomes the Burger’s Equation

introduced in section 3.1.

2

2

u u uu
t x x

ν∂ ∂ ∂
+ =

∂ ∂ ∂
 (4.42)

 40

Thus we have completed the Chapman-Enskog expansion by taking the Taylor series

expansion of the quantum lattice Boltzmann equation around local equilibrium, valid

when cot cos() 1θ φ ξ− << . This entire process can be a bit difficult to follow so it is

summarized here:

1. Expand mf around local equilibrium: (0) ...m m mf d fεδ= + +

2. Insert the expanded mf into a Taylor series expansion of the QLBE, explicitly writing

out only those terms of order 2ε or lower (since the first derivative in time is on the

order of 2ε).

3. Use the first moment of the QLBE to solve for the unknown (0)
mfδ in terms of md .

Placing the equations in matrix form can help, but it is nevertheless tricky since the

matrix J will be singular.

4. Insert (0)
mfδ into the results of step 2.

5. Sum the results of step 5 over m and simplify, taking advantage of the fact that

m
m

dρ =∑ .

The resulting equation will be the governing partial differential of the quantum lattice

Boltzmann equation in the continuum limit.

4.4 Numerical and experimental simulation of the Burgers equation

Yepez has run a numeric simulation of this algorithm with a lattice length equal to

256 on a conventional desktop computer, and compared its results to a known analytic

solution of the Burgers equation [10]. The initial condition of the simulation was a

 41

sinusoidal wave, which generates a shock front at later times. For the simulation he

chose 1τ = , 1= , / 4θ π= , and φ ξ= .

Figure 11. Numerical results of the Burgers equation simulation carried out by Yepez, along with the
analytic solution. Agreement between the simulation and the analytic solution is generally very good, with
slight deviations occurring at later times as a steep shock front is formed. The simulation shock front is
sharper than the analytic shock. This figure was used with permission from [10].

 42

Figure 12. Experimental results of the two qubit FQLGA simulating the Burgers equation carried out on a
type II NMR quantum computer. The black dots are the experimental results and the solid gray line is the
analytic solution. This figure was used with permission from [11].

The results of this simulation are presented in Figure 11. The agreement between

the simulation and analytic solution is generally very good, although there is some

divergence at later times as the steep shock front forms. The simulation produces a

sharper edged shock than the curved edge analytic solution. The agreement is

nevertheless impressive since the shock front appears to be greatly under-resolved.

Comparable classical algorithms used to model the Burgers equation require significantly

 43

more lattice sites, 162 65536= , and time steps, 182 262144τ τ= , to model a shock

formation with this accuracy.

This simulation has also been run on a working two qubit per node type II NMR

quantum computer with 16 nodes. The results of this are shown in Figure 12. The

dominant errors in this simulation come from errors in applying the collision operator,

which accumulate over time.

5 Three Qubit FQLGA Using Most General Collision Matrix

The two qubit FQLGA developed by Yepez can be extended in one dimension by

adding on an additional qubit per lattice site that does not move during streaming. Thus,

this sort of algorithm will have three particles per lattice site: particle one streams right,

particle two does not move, and particle three streams left. The difficulty in extending

this algorithm, however, is that each additional qubit greatly increases the complexity of

the most general collision operator that conserves particle number. This makes the

analytic treatment increasingly difficult to carry out. Nevertheless, I have derived the

quantum lattice Boltzmann equation for the most general three qubit collision operator

that conserves particle number, as well as the diffusion equation for a specific collision

matrix.

In what follows, I will discuss the analytic treatment of the most general three

qubit operator before deriving the diffusion equation in full detail. Then I will show the

results of numeric simulations of the three qubit FQLGA using the collision matrix which

models the diffusion equation. I will compare this simulation to the analytic solution and

investigate the convergence and numerical stability of the simulation.

 44

5.1 Microscopic scale: matrices and basis states

Like the two qubit algorithm developed by Yepez, my three qubit algorithm is

designed to conserve particle number. For this reason, there may only be mixing between

the states 110 , 101 , and 011 , and separately 001 , 010 , and 100 . I therefore

choose the basis given in (2.5), so that

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

111
(1)110

(1)101
011 (1)

001 (1)(1)
010 (1) (1)
100 (1)(1)
000

(1)(1)(1)

p p p

p p p

p p p

p p p

p p p

p p p

p p p

p p p

ψ
ψ
ψ
ψ

ψ
ψ
ψ
ψ

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ −⎜ ⎟
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟− − −⎝ ⎠

 (5.1)

where mp is of course the probability of finding a particle in state m. This choice makes

the collision matrix block diagonal. Thus it must have the form

1 0 0 0
0 (3) 0 0ˆ
0 0 (3) 0
0 0 0 1

U
C

U

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (5.2)

This is shorthand, since Ĉ must be an eight by eight matrix. The entries U(3) represent

the most general three by three unitary matrices. In fact, this collision matrix can be

simplified even further since U(3) = ie σ SU(3). From equation (4.10), we see that the

system dynamics are determined by the matrix †ˆ ˆˆmC n C , where ˆmn gives the probability of

finding a particle in state m and represents

 45

 1

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

ˆ ˆ, ,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n n

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟→ →⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 3

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

ˆ
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

n

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟→ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.3)

Since ˆmn is diagonal we know that †ˆ ˆˆmC n C must have the form

†
,1†

†
,2

1 0 0 0
ˆ0 (3) (3) 0 0ˆ ˆˆ

ˆ0 0 (3) (3) 0
0 0 0 0

i i
m

m i i
m

SU e D e SU
C n C

SU e D e SU

σ σ

σ σ

−

−

⎛ ⎞
⎜ ⎟

⋅ ⋅⎜ ⎟= ⎜ ⎟⋅ ⋅⎜ ⎟
⎜ ⎟
⎝ ⎠

 (5.4)

where ,
ˆ

m nD are diagonal matrices that depend on ˆmn . For instance, for m = 1

 1,1 1,2

1 0 0 0 0 0
ˆ ˆ0 1 0 and 0 0 0

0 0 0 0 0 1
D D

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.5)

Obviously, the terms ie σ− can be factored through the ,
ˆ

m nD matrices and cancel the terms

ie σ , so without any loss of generality one can use the simplified collision matrix

 46

1 0 0 0
0 (3) 0 0ˆ
0 0 (3) 0
0 0 0 1

SU
C

SU

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (5.6)

The matrix SU(3) has eight free parameters and is too complicated to write down here but

is presented in Appendix A.

5.2 Mesoscopic scale: quantum lattice Boltzmann equation

The quantum lattice Boltzmann equation

 ()†ˆ ˆˆ ˆ(,) (,) (,) (,)m l m m l l m m lf x e t f x t x t C n C n x tτ ψ ψ+ + − = − (5.7)

developed in 4.2 is still valid for my three qubit algorithm. Due to the complexity of the

most general SU(3) matrix, it is useful to temporarily replace it with the over-

parameterized matrix

 SU(3)

a b c

f gd

jh k

i i i

i ii

ii i

ae be ce

de fe ge

he je ke

θ θ θ

θ θθ

θθ θ

⎛ ⎞
⎜ ⎟

→ ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.8)

where I have written the entries of the SU(3) matrix as complex numbers in polar form,

parameterized by the real numbers , , ,a d f h j k− − and , , ,a d f h j kθ − − . Since the rows and

columns of a unitary matrix are orthonormal, the constraints

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

1) 1
2) 1
3) 1
4) 1
5) 1
6) 1

a b c
d f g
h j k
a d h
b f j
c g k

+ + =

+ + =

+ + =

+ + =

+ + =

+ + =

 47

() ()()

()() ()

() ()()

() ()()

()()

7) 0

8) 0

9) 0

10) 0

11)

b f c ga d

b ja h c k

j f k gh d

d f h ja b

d ga c

i ii

ii i

i ii

i ii

ii

ade bfe cge

ahe bje cke

hde jfe kge

abe dfe hje

ace dge h

θ θ θ θθ θ

θ θθ θ θ θ

θ θ θ θθ θ

θ θ θ θθ θ

θ θθ θ

− −−

−− −

− −−

− −−

−−

+ + =

+ + =

+ + =

+ + =

+ + ()

() ()()

0

12) 0

h k

f g j kb c

i

i ii

ke

bce fge jke

θ θ

θ θ θ θθ θ

−

− −−

=

+ + =

 (5.9)

must be true. Note that the conjugates of identities 7 through 12 must also be true.

Though rewriting the SU(3) matrix in the form (5.8) appears to have complicated matters,

it significantly simplifies the matrix multiplication †ˆ ˆˆ ˆ()m mC n C n− . For m = 1, this matrix

is equal to

() ()() ()2 2

() ()() ()2 2

() ()() () 2 2

(2

0 0 0 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

0 0 0 0

d f d ga b a c

d f f ga b b c

d g f ga c b c

i ii i

i ii i

i ii i

i

a d abe dfe ace dge

abe dfe b f bce fge

ace dge bce fge c g

h hje

θ θ θ θθ θ θ θ

θ θ θ θθ θ θ θ

θ θ θ θθ θ θ θ

− − − −− − − −

− − −− − −

− −− −

−

− + + + +

+ − + + +

+ + +
) ()

() ()2

()() 2

0

0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 0 0 0 0

h j h k

h j j k

j kh k

i

i i

ii

hke

hje j jke

hke jke k

θ θ θ θ

θ θ θ θ

θ θθ θ

− − −

− − −

−−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

− +⎜ ⎟
⎜ ⎟
⎝ ⎠

.(5.10)

Then, using the identities 4 through 6 and 10 through 12 in (5.9), this matrix becomes

() ()2

() ()2

()() 2

() ()2

() ()2

()() 2

0 0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

h j h k

h j j k

j kh k

h j h k

h j j k

j kh k

i i

i i

ii

i i

i i

ii

h hje hke

hje j jke

hke jke k

h hje hke

hje j jke

hke jke k

θ θ θ θ

θ θ θ θ

θ θθ θ

θ θ θ θ

θ θ θ θ

θ θθ θ

− − − −

− − −

−−

− − − −

− − −

−−

− − −

− − −

− − −

− + 0
0 0 0 0 0 0 0 0

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

. (5.11)

Multiplying this matrix from the left by ψ and from the right by ψ and using identity

3 from (5.9) one obtains the collision function for the first QLBE collision function.

 48

2 2 2
1 1 2 3

1 2 2 3 3

2 1 1 3 3

3 1 1 2 2

(1)

2 cos[](1 2) (1) (1)

2 cos[](1 2) (1) (1)

2 cos[](1 2) (1) (1) .

h j

h k

j k

k p j p h p

hj p p p p p

hk p p p p p

jk p p p p p

θ θ

θ θ

θ θ

Ω = − + + +

− − − − +

− − − − +

− − − −

 (5.12)

With similar work one obtains the second and third collision functions:

2 2 2
2 1 2 3

1 2 2 3 3

2 1 1 3 3

3 1 1 2 2

2 2 2
3 1 2 3

1 2 2 3 3

(1)

2 cos[](1 2) (1) (1)

2 cos[](1 2) (1) (1)

2 cos[](1 2) (1) (1)

(1)

2 cos[](1 2) (1) (1)

2 cos[

d f

d g

f g

a b

a

g p f p d p

df p p p p p

dg p p p p p

fg p p p p p

c p b p a p

ab p p p p p

ac

θ θ

θ θ

θ θ

θ θ

θ

Ω = + − + +

− − − − +

− − − − +

− − − −

Ω = + + − +

− − − − +

2 1 1 3 3

3 1 1 2 2

](1 2) (1) (1)

2 cos[](1 2) (1) (1) .
c

b c

p p p p p

bc p p p p p

θ

θ θ

− − − − +

− − − −

 (5.13)

Using identities 10 through 12 in (5.9) and their conjugates one can see that

13) cos() cos() cos() 0

14) cos() cos() cos() 0

15) cos() cos() cos() 0

a b d f h j

a c d g h k

b c f g j k

ab df hj

ac dg hk

bc fg jk

θ θ θ θ θ θ

θ θ θ θ θ θ

θ θ θ θ θ θ

− + − + − =

− + − + − =

− + − + − =

 (5.14)

so that 1 2 3 0Ω +Ω +Ω = .

5.3 Macroscopic scale: Chapman-Enskog

As discussed in section 4.3.2, the quantum lattice Boltzmann equation can be

expanded in a Taylor series around local equilibrium to yield

(0) 2

2 2 2 2 2 3
2

1 ()
2

m m m m
m m m m

d d f de e e
t x x x

δε τ ε ε ε ε∂ ∂ ∂ ∂
+ + + +Ο = Ω

∂ ∂ ∂ ∂
. (5.15)

 49

One may sum these equations over m with 1 1e = , 2 0e = , 3 1e = − , and 1 2 3d d dρ = + + to

obtain

2

2 2 (0) (0) 2 2 3
1 3 1 3 2

1() () () 0
2

d d f f
t x x x
ρ ρε τ ε ε δ δ ε ε∂ ∂ ∂ ∂
+ − + − + +Ο =

∂ ∂ ∂ ∂
. (5.16)

The key difficulty now is finding the local equilibrium values md , which one

needs to solve for 1 3()d d− and (0) (0)
1 3()f fδ δ− to complete the Chapman-Enskog

expansion. Since the collision functions sum to zero, only two of these functions are

linearly independent. The collision functions are each equal to zero at local equilibrium.

Therefore, the three equations that one must solve to obtain the three unknown

equilibrium values are

1

2

1 2 3

0

0

.

m m

m m

p d

p d

d d dρ

=

=

Ω =

Ω =

= + +

 (5.17)

The complexity of the collision functions necessitates making a variable

substitution to simplify the first two equations. Making the substitutions

 1 2 32 2 2

1 1 1, , ,
1 1 1

d d d
x y z

= = =
+ + +

 (5.18)

and multiplying the first two equations in (5.17) by 2 2 2(1)(1)(1)x y z+ + + simplifies

these equations so that they no longer depend on the square root of the variables we are

trying to solve for. The three equations become

2 2 2 2 2 2

2 2

2 2 2 2 2 2

((1) 2 cos())

(2 cos()(1) 2 cos()(1))

2 cos() () (1) 0

a b

b c a c

a b

a y ab yz b z c x

bc z y ac y z x

ab yz b c z y a z

θ θ

θ θ θ θ

θ θ

− + − + −

+ − − + − −

− − + − + + − =

 50

2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2 2

((1) 2 cos())

(2 cos()(1) 2 cos()(1))

2 cos() (1) 0

1 1 1
1 1 1

d f

d g f g

d f

f z df yz d z g x

dg y z fg z y x

df yz f g z y d z

x y z

θ θ

θ θ θ θ

θ θ

ρ

− + − + −

+ − − + − −

− − + − + − =

+ + =
+ + +

 (5.19)

Unfortunately, the first two equations are quadratic in x, y, and z, and it is not yet known

if it is possible to find an analytic solution to these three equations, even with the

additional constraints that come from replacing a-g with the most general values from a

SU(3) matrix. Additional research in this area is left for future work, and I have focused

on a specific SU(3) matrix for the remainder of this thesis.

6 Diffusion Equation

6.1 Analytic treatment

The diffusion equation can be modeled if the SU(3) matrices inside the collision

function are equal to

2 /3
/6

2 /3

2 /3

1 1
U(3) 1 1

3 1 1

i
i

i

i

e
e e

e

π
π

π

π

−
⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.1)

Inserting this into (5.12) and (5.13) gives the collision functions

1
1 1 2 3 1 2 2 3 33

2 1 1 3 3 3 1 1 2 2

1
2 1 2 3 1 2 2 3 33

2 1 1 3 3 3 1 1 2 2

[2 2(2 1) (1) (1)

(2 1) (1) (1) (2 1) (1) (1)]

[2 (2 1) (1) (1)

2(2 1) (1) (1) (2 1) (1) (1)]

p p p p p p p p

p p p p p p p p p p

p p p p p p p p

p p p p p p p p p p

Ω = − + + − − − − +

− − − + − − −

Ω = − + + − − − +

− − − − + − − −

 51

1

3 1 2 3 1 2 2 3 33

2 1 1 3 3 3 1 1 2 2

[2 (2 1) (1) (1)

(2 1) (1) (1) 2(2 1) (1) (1)]

p p p p p p p p

p p p p p p p p p p

Ω = + − + − − − +

− − − − − − −
 (6.2)

where, as expected, 1 2 3 0Ω +Ω +Ω = .

Running the numerical simulation presented in section 6.2 suggests that the

equilibrium values md , are 1 2 3 / 3d d d ρ= = = . This can be easily verified by noting that

at equilibrium, the collision matrix should not change the occupation probabilities; that is

ˆ
eq eqC ψ ψ= . Thus

1 2 3/ 6

2 / 3 1 2 3

2 / 3 1 2 3

2 / 3/ 6
1 2 3

2 / 3
1 2 3

2 / 3

1 2 32 / 3

/ 6

3 0 0 0 0 0 0 0
(1)0 1 1 0 0 0 0

(1)0 1 1 0 0 0 0
(1)0 1 1 0 0 0 0

0 0 0 0 1 1 03 (1)(1)
0 0 0 0 1 1 0 (1) (1
0 0 0 0 1 1 0

0 0 0 0 0 0 0 3

i

i

i

ii

i

i

i

i

d d d
e

d d de
d d de

d d dee
e d d d

e d d d
e

e

π

π

π

ππ

π

π

π

π

−

⎛ ⎞
⎜ ⎟ −
⎜ ⎟

−⎜ ⎟
⎜ ⎟

−⎜ ⎟
⎜ ⎟

− −⎜ ⎟
⎜ ⎟ − −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

(1)

(1)

(1)

(1)(1)

) (1) (1)

(1)(1) (1)(1)

(1)(1)(1) (1)(1)(1)

d d d

d d d

d d d

d d d

d d d

d d d

d d d d d d

d d d d d d

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

−⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− − − −
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− − − − − −⎝ ⎠ ⎝ ⎠

 (6.3)

If we insert 1 2 3 / 3d d d ρ= = = into the above equation, the expression is reduced

to the following equations

2/3 2/3

/ 6
2/3

/ 6
2/3

2 /3 2 /3

3 3

(2) 1 1
3 3 3 33

(2) 1 1
3 3 3 33

1 1 ,
3 3

i
i

i
i

e e

e e

π
π

π
π

ρ ρ

ρ ρ ρ ρ

ρ ρ ρ ρ

ρ ρ

−

−

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (6.4)

which of course can be further simplified to the identities 1 = 1 and / 6 2 /3
3

(2) 1i ie eπ π−
+ = .

 52

This verifies that the diffusion equation collision matrix has no effect on the local state

when 1 2 3 / 3d d d ρ= = = . Thus, this must be the equilibrium condition.

After finding the equilibrium condition, the next step is to perform the Chapman-

Enskog expansion around local equilibrium. From section 4.3.2, we know that the

equations

(0) 2

2 2 2 2 2 3
2

1 ()
2

m m m m
m m m m

d d f de e e
t x x x

δε τ ε ε ε ε∂ ∂ ∂ ∂
+ + + +Ο = Ω

∂ ∂ ∂ ∂
 (6.5)

and

 (0)ˆˆ de J f
x

ε ε δ∂
=

∂
 (6.6)

are the Taylor series expansion and first moment equation of the FQLBE respectively.

The vectors in (6.6) are now

1

2

3

d
x

dm
x
d
x

d
x

∂
∂

∂
∂

∂
∂

⎛ ⎞
⎜ ⎟∂

= ⎜ ⎟
∂ ⎜ ⎟⎜ ⎟

⎝ ⎠

 and

(0)
1

(0) (0)
2
(0)

3

f
f f

f

δ
δ δ

δ

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.7)

and the matrices are

1 0 0

ˆ 0 0 0
0 0 1

e
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

 and

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3
1,2,3

1 1
2 2

1 1
2 2
1 1
2 2

/3

1
ˆ 1

1

f f f

f f f

f f f f

J

ρ

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

∂Ω ∂Ω ∂Ω
∂ ∂ ∂

=

⎛ ⎞ −⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟ ⎝ ⎠⎝ ⎠

 (6.8)

Once again Ĵ is singular. The eigenvalues and left and right eigenvectors of Ĵ

are

 ()1 1 1

1
3 1 1 1 2 E 0
2 3

1
Eλ

−⎛ ⎞
⎜ ⎟= − = − − = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 53

()

()

2 2 2

3 3 3

1
3 1 1 2 1 E 1
2 3

0

1
10 1 1 1 E 1
3

1

E

E

λ

λ

−⎛ ⎞
⎜ ⎟= − = − − = ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= = = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6.9)

with lengths selected so that i j ijE E δ= . Since 1 2λ λ= , we can use the same sort of

trick Yepez used (described in section 4.3.2) to solve for (0)fδ : multiply both sides of

the first moment equation (6.6) by Ĵ . Ĵ squared is equal to

() ()()
()

2 2
1 1 1 2 2 2 1 1 1 2 2 1 1 2 2

2
1 1 1 2 2

1
ˆ

E E E E E E E E E E E E

E E E E

J

λ λ λ

λ

λ

+ = + +

= +

=

 (6.10)

Thus equation (6.6) can be solved for (0)fδ as follows.

2 (0)

(0)
1

(0)
1

(0)

1

ˆ ˆˆ

ˆ ˆˆ

implies

ˆ

1 ˆ

dJ e J f
x
dJ e J f
x

de f
x
de f
x

δ

λ δ

λ δ

δ
λ

∂
=

∂

∂
=

∂

∂
=

∂

∂
=

∂

 (6.11)

Inserting this solution into (6.5) along with the equilibrium condition / 3md ρ=

produces

 2 2 2 2 2 2 2 31 1 1 ()
3 3 18

m m m
m m m

d d de e
t x x

ε τ ε ε ε∂ ∂ ∂
+ − +Ο = Ω

∂ ∂ ∂
. (6.12)

 54

Summing these equation over m with 1 1e = , 2 0e = , and 3 1e = − produces the

diffusion equation

2 2

3
2 ()

9t x
ρ ρ ε

τ
∂ ∂

= +Ο
∂ ∂

. (6.13)

This derivation suggests that the simulation is accurate to at least first order in

time and second order in space. The diffusion coefficient for the three qubit FQLGA is

equal to 2 / 9d τ= where is the lattice spacing and τ is the time step. It is possible to

arbitrarily change either or τ to adjust the diffusion constant. For instance, if one

wishes the diffusion constant to be 1/9 m2/s, then is one meter if the time step τ is

defined to be one second.

6.2 Numerical treatment

The results of a numerical simulation of the diffusion equation three qubit

FQLGA model are presented in this section. All numerical simulations were run in

Mathematica 5.1 or 5.2 on a conventional desktop computer.

6.2.1 Sum of Gaussian and sinusoid initial condition

The three qubit FQLGA is carried out using circular boundary conditions—that is,

(0,) (,)t L tρ ρ= where L is the length of the lattice, set to 250 for this simulation. The

initial condition was

2/ 2

/101 2 7 13(,0) sin
6 10 60

x L
Lxx e

L
πρ

−⎛ ⎞−⎜ ⎟
⎝ ⎠⎛ ⎞= + +⎜ ⎟

⎝ ⎠
. (6.14)

The solution to the diffusion equation with circular boundary conditions is

 55

2(2 /)

1

2 2(,) sin cosd m L t
exact m m

m

mx mxx t B e C D
L L

π π πρ
∞

=

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ (6.15)

where

0

0

0

1 (,0)

2 2(,0)cos

2 2(,0)sin .

L

L

m

L

m

B x dx
L

mxD x dx
L L

mxC x dx
L L

ρ

πρ

πρ

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫

∫

 (6.16)

The derivation of this solution is presented in Appendix B. From this solution,

one should expect the simulation to exhibit a roughly exponential decay from the initial

condition to the average of the initial state 0D , where the exponential decay constant of

higher frequency terms (in space) is larger than that of low frequency terms. The qubits

are each initialized to be (,0) / 3zρ so that they will be close to local equilibrium after the

first and subsequent time steps. The results of the simulation are presented in Figure 13.

The FQLGA results are shown in gray while the black line is the sum of the first

14 terms of the analytic solution (6.15). The sum is cut off after 14 terms because the

coefficients mC and mD for 14m > are less than the negligible value 10-10. The average

percent error between the simulation and the analytic solution is shown in Figure 14 and

Figure 16. The maximum percent errors are shown in Figure 15 and Figure 17. From

these figures, one can see that the magnitude of these errors oscillates within the first ten

time steps, after which they begin to steadily decrease as the simulation approaches

equilibrium.

 56

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

t = 0 t = 1500

t = 3000 t = 4500

t = 6000 t = 7500

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

t = 15000

50 100 150 200 250
z

0.2

0.4

0.6

0.8

1

rH
zL

t = 30000

Figure 13. The results of the FQLGA simulation with circular boundary conditions for a number of time
steps. The simulation lattice points make up the thick gray line while the exact solution is in black. The
solution decays to the average density of the initial condition.

 57

Figure 14. Plot of the average percent errors over the entire lattice for the first 20 time steps. Oscillations
in these errors are apparent at the beginning of the simulation but disappear after about ten time steps.
After this, the errors decrease as shown in Figure 16.

Figure 15. Plot of the maximum percent errors in the lattice for the first 20 time steps. Oscillations in the
maximum percent errors are also apparent at the beginning of the simulation. The largest percent error
during the simulation occurs after the first time step, and is ~ 0.14%.

 58

Figure 16. Plot of the average percent errors every 300 time steps. The errors decrease as the simulation
moves closer to equilibrium.

Figure 17. Plot of the maximum percent error every 300 time steps.

 59

From these plots we see that the maximum percent error is only about a tenth of a

percent, while the largest average percent error is .03 %, indicating that the simulation is

a very accurate model of the diffusion equation at this lattice resolution. Increasing the

resolution (that is, increasing the number of lattice sites) only improves the average

percent error, as is clear from Figure 18. This is a log-log plot of the lattice resolution

verses the average percent error. The plot was made by running identical simulations for

15 time steps with lattice lengths ranging from 50 to 12800 . The error decreases as

 percent error ~ 2.01xδ where /x Lδ ≡ , indicating second order convergence in space.

Figure 18. Log-log plot of the average percent error verses the lattice resolution. The same simulation was
run with lattice lengths ranging from 50 to 12800 , each evaluated at 15τ . The slope of the best fit
solid line is 2.01, indicating second order convergence in space.

6.2.2 Delta function initial condition

A two qubit FQLGA simulation of the diffusion equation was developed by

Yepez [8]. This algorithm has the unfortunate property that the lattice consists of two

 60

interpenetrating but noninteracting lattices. This is due to the fact that when qubit one

from lattice site m streams right, qubit two of lattice site m+1 streams left. Thus, the left

streaming qubit reaches lattice site m without ever having collided with the right

streaming qubit, which is now on lattice site m+1. This occurs everywhere in the lattice

so that qubits will only interact with those from every other lattice site. This can be

demonstrated if, for example, the simulation’s initial condition is a delta function1 as

shown in the left column of Figure 19.

Figure 19. Results of Yepez’s two qubit diffusion equation simulation with a delta function initial
condition. The left column shows the results of the unmodified algorithm with qubits one and two
streaming every time step. The sharp spikes in these pictures are due to the noninteracting nature of all the
qubits. The right column shows a modified simulation with the left moving qubits streaming every even
time step and the right moving qubits streaming every odd time step. The modified algorithm corrects the
deficiency in the algorithm. This figure was used with permission from [9].

1 This is, of course, a Dirac delta function with height equal to one.

 61

There are two methods of correcting this deficiency. The first, taken by Yepez, is

to stream the left moving qubits every even time step and the right moving qubits every

odd time step. The results of this process are shown in the right column in Figure 19. An

alternate solution to this problem is to use the three qubit algorithm I have developed.

The results of a simulation run with a delta function initial condition are presented

in Figure 20. In this figure, the time evolution of this function is compared to the analytic

time evolution of a piecewise defined function. This piecewise function is equal to zero

everywhere except between the lattice sites adjacent to the delta function, where it is

triangular in shape with height equal to one. This ensures that the total integrated area of

the piecewise function is equal to the total density of the lattice, so that at infinite time,

when the evolved lattice and piecewise function have reached equilibrium, the constant

lattice density will equal the height of the evolved piecewise function.

The three qubit algorithm does not display the unusual pattern present in the

unmodified version of the two qubit algorithm, since the streaming qubits interact via the

stationary qubits. However, it does not seem that this method is superior to the modified

two qubit algorithm for two reasons. The first is that this algorithm can be much more

difficult to implement experimentally on a NMR computer because increasing the

number of qubits per node increases the complexity of the system. In addition, the

diffusion coefficient for the three qubit algorithm is 2 / 9τ , whereas it is 2 / 2τ for the

two qubit algorithm. This means that for equal lattice lengths and time steps, the two

qubit algorithm will evolve 4.5 times faster than the three qubit algorithm.

One should note that neither diffusion equation algorithm effectively models the

evolution of a large gradient function with poor lattice resolution, such as a delta

 62

Figure 20. Results of the three qubit FQLGA (black data points) with the initial condition equal to zero
everywhere except at the center lattice site where it is equal to one. The time evolution of this function is
compared to the analytic time evolution of a piecewise defined function (solid line), with an integrated area
equal to the total density of the FQLGA simulation.

 63

function. This is because the “smallness parameter” ε , which was defined to be on the

order of the Knudsen number, is no longer small. The Knudsen number is equal to the

mean free path (the lattice spacing) over the characteristic length (the width of the delta

function). Since these two numbers are roughly equal, it is no longer appropriate to

neglect the terms of order 3ε and higher in the equation

2 2

3
2 ()

9t x
ρ ρ ε

τ
∂ ∂

= +Ο
∂ ∂

, (6.17)

and the diffusion equation is no longer a good approximation of the governing equation

of the lattice. It is not surprising, then, that the agreement between the algorithm and the

analytic solution to the diffusion equation is poor at the beginning of the simulation.

Nevertheless, at times after about 16τ the Knudsen number becomes smaller and the

algorithm begins to converge to the analytic solution of the diffusion equation.

Another case where the FQLGA can be expected to perform poorly when

modeling the diffusion equation is when the assumption

 (0) 2 (1) 3()m m m mf d f fεδ ε δ ε= + + +Ο (6.18)

is no longer valid—i.e. if (0) /m mf dδ is no longer on the order of ε ~ Kn. In this case, the

Chapman-Enskog expansion will fail to produce an equation which accurately models the

lattice in the continuum limit. For example, if one were to naively choose the initial

conditions of the lattice so that the density was not distributed near local equilibrium to

begin with, then (0) /m mf dδ will be large and the lattice will not behave in a manner which

mimics the diffusion equation. This would have been the case, for instance, if the density

distribution shown in Figure 13 had initially been distributed so that the total particle

 64

density at every lattice site was located in a single qubit, instead of being spread equally

between qubits one, two, and three. Therefore, to model fluid dynamics with a FQLGA it

is essential to distribute the qubit probabilities near local equilibrium when a lattice is

initialized.

Returning to the delta function simulation, it is worth pointing out that this

simulation contains the most extreme gradient possible in the density function ρ . For

this reason, it represents a strong test of the numerical stability of both the two and three

qubit FQLGAs. Both algorithms perform well under these conditions due to the unitary

nature and structure of the collision operators. Since the operators are unitary and block

diagonal to preserve the probability of measuring qubits in the state 1 , the total

probability of finding all the qubits in the simulation in the state 1 is preserved. Thus,

the values of particle density will remain bound and not “blow up,” and are in this sense

numerically stable.

Another common definition of numerical stability concerns the accuracy with

which an algorithm models an equation [32]. It is clear from the results of this thesis that

the three qubit Factorized Quantum Lattice Gas Algorithm is, in this sense, a numerically

stable model of the diffusion equation when the Knudsen is much less than one. In

addition, the results presented in Figure 20 suggest that even if the Knudsen number is

initially large, the algorithm can be numerically accurate at later times as long as the

initial conditions of the lattice and the simulated function are the same, and the integrated

area of the simulated function is equal to the average density of the FQLGA.

 65

7 Conclusion

This thesis was written in support of AFRL’s and AFOSR’s Quantum

Computation for Physical Modeling basic research theme, by exploring and extending a

quantum algorithm designed to model fluid dynamics using a practical quantum

computer. To date, the most advanced type II quantum computer prototype uses NMR

technology. Two properties of the algorithm presented in this paper make it an ideal test

case for the modeling utility of a three qubit per node type II NMR quantum computer.

The first is that there is a maximum of three qubits that the algorithm requires to be

coherent at a given time. This allows the algorithm to be run on a set of three qubit

parallel quantum computers connected by classical communications channels: a type II

quantum computer. The second property that makes the algorithm ideal for a NMR

quantum computer is that information is stored in the probability coefficients of the qubit

basis states. Obtaining these probabilities requires an ensemble measurement of identical

quantum computers running the same algorithm, which is precisely the sort of

measurement used in a NMR machine. Therefore, this algorithm represents a good test

of the computational capabilities of a NMR quantum computer.

This thesis extended the Factorized Quantum Lattice Gas Algorithm from two

qubits to three, in an effort to improve the algorithm and possibly obtain a new

macroscopic governing equation. The most general three qubit collision operator that

preserves particle number was derived, along with the Quantum Lattice Boltzmann

Equation for this operator. A partial derivation of the governing macroscopic equation

for the algorithm in the continuum limit was presented.

 66

Difficulties in deriving the qubit local equilibrium values lead me to consider a

more specific collision operator. For this operator, the governing macroscopic equation

for the lattice in the continuum limit was the diffusion equation. A numerical simulation

of this algorithm carried out on a conventional desktop computer with a lattice length

250L = was then presented and compared to the analytic solution of the one

dimensional diffusion equation with circular boundary conditions. The simulation and

analytic solution matched very well—the largest average percent error occurred after the

first time step and was 0.03%. Thereafter the error decreased as the simulation

progressed. Repeated simulations with identical initial conditions but varying lattice

resolutions revealed that the simulation possesses second order convergence in space.

Simulation of a severely under-resolved gradient (a Dirac delta function) was also

presented to check for numerical instabilities. No numerical overflows occurred and the

model remained stable owing to the collision operator being unitary and block diagonal,

preserving particle number. A comparison of the delta function evolution using the

FQLGA, to the analytic time evolution of a piecewise defined function revealed that the

diffusion equation remained an accurate governing equation for the FQLGA in the

continuum limit, as long as the Knudsen number is small. In addition, it was observed

that the Chapman-Enskog expansion will not result in a valid governing PDE unless the

ratio of the lattice deviation from local equilibrium to the local equilibrium density is on

the order of the Knudsen number.

 67

Appendix A. SU(3) Matrix

A unitary matrix may be generated by exponentiating a Hermitian matrix.

Exponentiating a Hermitian quantum mechanical Hamiltonian to generate a unitary time

evolution operator is a well known example of this.

The collection of all n by n unitary matrices forms a closed group known as U(n).

The closed subgroup of all unitary n by n matrices with a determinant equal to one is

called “special” and is denoted SU(n). Obviously, it is possible to create members of

these groups by exponentiating Hermitian matrices. An element R of the unitary group G

may be written

 exp[]iθ=R S (A.1)

 where the Hermitian S is called a generator of G [31]. In addition, since special unitary

matrices have a determinant equal to one, the generators of a special unitary matrix must

be traceless [31].

 det() exp(tr(ln())) exp(tr()) 1 tr() 0iθ= = = ⇒ =R R S S (A.2)

 Since SU(n) is a closed group, multiplying two or more elements within the group

will produce another element of that group. Multiplying all the exponentiated generators

of a group is one way to create the most general element of that group. For instance, a

possible choice for the generators of SU(3) are the Gell-Mann matrices:

0 1 0 0 0 0 0 1 0 0
1 0 0 , 0 0 , 0 0 0 , 0 0 0
0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 , 0 0 , 0 1 0 , 0 1 0 .
0 1 0 0 0 0 0 0 0 0 2

i i
i

i

i
i

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (A.3)

 68

Notice that by multiplying each of these matrices by a free parameter and summing them

together one will obtain the most general three by three traceless Hermitian matrix.

The exponentiated Gell-Mann matrices are

1 2

3 4

5

cos() sin() 0 cos() sin() 0
sin() cos() 0 , sin() cos() 0

0 0 1 0 0 1

cos() 0 sin() cos() 0 sin()
0 1 0 , 0 1 0

sin() 0 cos() sin() 0 cos()

1 0 0
0 cos()

i
i

i

i

α α β β
α α β β

γ γ δ δ

γ γ δ δ

ε

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

=

R R

R R

R 6

7 8
2

1 0 0
sin() , 0 cos() sin()

0 sin() cos() 0 sin() cos()

0 0 0 0
0 0 , 0 0
0 0 1 0 0

i i

i i

i

i
i

e e
e e

e

η ξ

η ξ

ξ

ε φ φ
ε ε φ φ

−

−

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

R

R R

 (A.4)

Multiplying these matrices together is one method of generating the most general SU(3)

matrix. This matrix is very complicated and not worth explicitly writing here.

For the purposes of the FQLGA, this matrix can be simplified a bit if the order of

multiplication is

 8 7 6 5 4 3 2 1

8 7

SU(3) =
=

R R R R R R R R
R R M

 (A.5)

where M is the product of 6R through 1R . Inserting this notation into equation (5.4) we

see that

 69

† † †
7 8 ,1 8 7†

† † †
7 8 ,2 8 7

†
,1

†
,2

1 0 0 0
ˆ0 0 0ˆ ˆˆ

ˆ0 0 0
0 0 0 0

1 0 0 0
ˆ0 0 0

ˆ0 0 0
0 0 0 0

m
m

m

m

m

D
C n C

D

D

D

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

M R R R R M

M R R R R M

M M

M M

. (A.6)

since the matrices ,
ˆ

m nD , 7R , and 8R are all diagonal. For instance, for the matrix 1,1D̂

one obtains

† †
7 8 1,1 8 7

2 2

ˆ

0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0
0 0 0 1 0
0 0 0 0 0 0

i i i i

i i i i

i i

i i i i

i i i i

D

e e e e
e e e e

e e

e e e e
e e e e

η ξ ξ η

η ξ ξ η

ξ ξ

η ξ ξ η

η ξ ξ η

− −

− −

−

− −

− −

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜= =⎜ ⎟ ⎜

⎜⎜ ⎟ ⎝⎝ ⎠

R R R R

1,1D̂⎟ =⎟
⎟
⎠

(A.7)

Therefore, for the purposes of this FQLGA it is possible to replace the full eight

parameter SU(3) matrix with the six parameter matrix M.

In fact, preliminary investigation suggests that it may be possible to replace M

with a simpler four parameter matrix, which we shall label N. This can best be

understood by considering that the purpose of the matrix N is to redistribute probabilities

among three basis states. As an example, suppose we were interested in swapping the

probabilities between the first and second states. One could then use the following swap

matrix to do so

 70

 1

0 1 0
1 0 0
0 0 1

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

Swap (A.8)

If, however, one was interested in only “partially swapping” the probabilities then it

would be better to use the one over thα root of 1Swap , which is

 () () ()

1 1 1 1 2 2 2 3 3 3

1 1
2 2

1 1 1 1 1 1
2 2 2 2 2 2

0
0 1 0 0 0 1 1 0

10 0

1 1 0
1 1 1 0 .
2

0 0 2

i

i i

i i

E E E E E E

e

e e
e e

α α α α

πα α α

πα πα

πα πα

λ λ λ
−

−

= + +

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟= + +⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞+ −
⎜ ⎟

= − +⎜ ⎟
⎜ ⎟
⎝ ⎠

Swap

 (A.9)

There are three more ways that one can swap probabilities among qubits. They are listed

below along with their associated roots.

2 2

3 3

4 4

1 0 0 2 0 0
10 0 1 , 0 1 1
2

0 1 0 0 1 1

0 0 1 1 0 1
10 1 0 , 0 2 0
2

1 0 0 1 0 1

0 1 0 1
10 0 1 ,
3

1 0 0

i i

i i

i i

i i

e e
e e

e e

e e

β πβ πβ

πβ πβ

πγ πγ

γ

πγ πγ

φ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = + −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

⎛ ⎞+ −⎛ ⎞
⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− +⎝ ⎠ ⎝ ⎠

+⎛ ⎞
⎜ ⎟= =⎜ ⎟
⎜ ⎟
⎝ ⎠

Swap Swap

Swap Swap

Swap Swap
2 1 1

1 1 2 1
1 1 1 2

i i i

i i i

i i i

e e e
e e e
e e e

πφ πφ πφ

πφ πφ πφ

πφ πφ πφ

− − −

− − −

− − −

⎛ ⎞− −
⎜ ⎟

− + −⎜ ⎟
⎜ ⎟− − +⎝ ⎠

 (A.10)

The determinants of all the root matrices are complex numbers with magnitude one,

meaning they are all unitary as opposed to special unitary. They can easily be made a

member of SU(3) by multiplying each matrix by its determinate to the 1
3− power.

 71

However, this step complicates the matrices and has no effect on the final results of the

algorithm, so it is unnecessary.

 Thus, a simpler four parameter matrix which can replace the eight parameter

SU(3) may be

() ()1 1 1
3 8 3

() ()1 1 1
1 2 3 4 3 8 3

1 1 1
3 4 3

()1 1 1
3 4 3
1 1
3 4

((1 3))
((1 3))

((1))

()

i i i i i i i i

i i i i i i i i

i i i i

i i i i

e e e e e e e e
e e e e e e e e

e e e e

e e e e

φ α β α β γ α β α β

α β γ φ φ α β α β γ α β α β

φ β γ β

φ α β α β

− + +

− + +

− −

− +−

⎛ + + − + + + + −
⎜

= + − − − + − + +⎜
⎜ + + − +⎝

+ − + −
+

Swap Swap Swap Swap

() ()1 1 1
3 8 3

() () ()1 1 1 1
3 3 8 3

1 1 1 1 1 1
3 2 3 3 4 3

((1 3))
() ((1 3))

() ((1))

i i i i i i i i

i i i i i i i i i i i i

i i i i i i

e e e e e e e e
e e e e e e e e e e e e

e e e e e e

φ α β α β γ α β α β

φ α β α β φ α β α β γ α β α β

φ β φ β γ β

− + +

− + − + +− −

− − −

⎞+ + − + − + + −
⎟

+ + + − + + + + − + + ⎟
⎟+ − + + + + ⎠

(A.11)

where the matrix is written on two lines due to its length.

 72

Appendix B. Analytic Solution of the Diffusion Equation

The diffusion equation

2

2d
t x
ρ ρ∂ ∂
=

∂ ∂
 (B.1)

can be solved assuming a separable solution () ()X x T tρ = . Then the diffusion equation

becomes

 21 T X k
d T X

′ ′′
= = − (B.2)

after dividing (B.1) by d X T . Note that since the left hand side of the equation depends

only on t, while the right hand side depends only on x, both sides must be equal to a

constant to be true for all t and x. The constant is labeled 2k− in anticipation of what

follows.

By inspection, the solution to the equation 2/T T dk′ = − is

2

() dk tT t Ae B−= + (B.3)

where A and B are constants. The solution to 2/X X k′′ = − is

 () sin() cos()X x C kx D kx E= + + (B.4)

where C, D, and E are also constants. With circular boundary conditions,

 (0) sin() cos() ()X D E C kL D kL E X L= + = + + = (B.5)

which can only be true if 2 /k m Lπ= for integer m. Of course, the most general solution

for ()X x must be the sum of (B.4) over all possible m, so that

2(2 /)

1

2 2() () sin cosd m L t
m m

m

mx mxX x T t B e C D
L L

π π πρ
∞

=

⎛ ⎞⎛ ⎞ ⎛ ⎞= = + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ . (B.6)

 73

The initial condition is thus

1

2 2(,0) sin cosm m
m

mx mxx B C D
L L
π πρ

∞

=

⎛ ⎞⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ . (B.7)

To solve for the constants, we use identities

0

0

0

0

2cos 0

2sin 0

2 2cos cos
2

2 2sin sin .
2

L

L

L

mn

L

mn

nx dx
L

nx dx
L

mx nx Ldx
L L

mx nx Ldx
L L

π

π

π π δ

π π δ

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫

∫

∫

∫

 (B.8)

Then multiplying both sides of (B.7) by sin(2 /)nx Lπ , integrating from zero to L, and

using identities two and four gives

0

2 2(,0)sin
L

n
nxC x dx

L L
πρ ⎛ ⎞= ⎜ ⎟

⎝ ⎠∫ . (B.9)

Similar steps allow one to solve for the constants

 0

0

1 (,0)

2 2(,0)cos .

L

L

m

B x dx
L

mxD x dx
L L

ρ

πρ

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∫

∫
 (B.10)

 74

Bibliography

1. Jeffrey Yepez, Quantum Computation for Physical Modeling, Computer Physics
Communications. 146 (3), 277 (2002)

2. Jeffrey Yepez, Lattice-Gas Quantum Computation, International Journal of Modern
Physics C. 9 (8), 1587 (1998)

3. Jeffrey Yepez, Quantum lattice-gas model for computational fluid dynamics, Phyical
Review E. 63, 046702 (2001)

4. Jeffrey Yepez, A Quantum Lattice-Gas Model for Computational Fluid Dyanmics,
Physical Review E. Submitted (1999), published without background material (2001)

5. Jeffrey Yepez, Quantum Computation of Fluid Dynamics, Lecture Notes in
Computer Science. 1509, 34 (1998)

6. Marco A. Pravia, Zhiying Chen, Jeffrey Yepez and David G. Cory, Towards a NMR
Implementation of a Quantum Lattice Gas Algorithm, Computer Physics
Communications. 146 (3), 339 (2001)

7. Marco A. Pravia, Zhiying Chen, Jeffrey Yepez, and David G. Cory, Experimental
Demonstration of Quantum Lattice Gas Computation, Quantum Information
Processing. 2, 97 (2003)

8. G. P. Berman, A. A. Ezhov, D. I. Kamenev, and J. Yepez, Simulation of the
diffusion equation on a type-II quantum computer, Physics Review A. 66, 012310
(2002)

9. Jeffrey Yepez, Quantum Lattice-Gas Model for the Diffusion Equation, International
Journal of Modern Physics C. 12, 1285 (2001)

10. Jeffrey Yepez, Quantum lattice-gas model for the Burgers equation, Journal of
Statistical Physics. 107 (1), 203 (2002)

11. Zhiying Chen, Jeffrey Yepez, and David G. Cory, Simulation of the Burgers
equation by NMR quantum information processing, Physical Review A. to appear
(2006) arXiv:quant-ph/0410198

12. Jeffrey Yepez, An efficient quantum algorithm for the one-dimensional Burgers
equation, Physical Review. Submitted (2002) arXiv:quant-ph/0210092

13. Richard P. Feynman, Simulating physics with computers, International Journal of
Theoretical Physics. 21 (6), 467 (1982)

 75

14. Richard P. Feynman, Quantum mechanical computers, Optics News. 11 (2), 11
(1985)

15. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information.
Cambridge University Press, Cambridge (2000)

16. P. W. Shor, Algorithms for quantum computation: discrete logarithms and factoring,
Proceedings, 35th Annual Symposium on Foundations of Computer Science. IEEE
Press (1994)

17. L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack,
Physics Review Letters. 79 (2), 325 (1997)

18. Peter J. Love, and Bruce M. Boghosian, Type-II Quantum Algorithms, Physica A. in
Press (2006)

19. Maximilian Schlosshauer, Decoherence, the measurement problem, and
interpretations of quantum mechanics, Reviews of Modern Physics. 76, 1267 (2004)

20. L. D. Landau and E. M. Lifshitz, Fluid Mechanics, volume 6 of Course of
Theoretical Physics. Pergamon Press, 2nd edition (1987)

21. J M Buick. Lattice Boltzmann Methods in Interfacial Wave Modeling, The
University of Edinburgh (1997)

22. Edward R. Benton, and George W. Platzman, A table of solution of the one-
dimensional Burgers equation, Quarterly of Applied Mathematics. 30, 195 (1972)

23. Stephen Wolfram, Cellular automaton fluids 1: Basic theory, Journal of Statistical
Physics. 45 (3/4), 471 (1986)

24. U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes
equation, Physics Review Letters. 56, 1505 (1986)

25. Cecile Appert, and Stephane Zaleski, Lattice gas with a liquid-gas transition.
Physical Review Letters. 64, 1 (1990)

26. Jeffrey Yepez, Lattice gas dynamics: Volume I viscous fluids, Technical report pl-tr-
96-2122 (i), Air Force Research Laboratory (1996)

27. Donald A. Gurnett and Amitava Bhattacharjee, Introduction to Plasma Physics.
Cambridge University Press (2005)

28. William Feller, An Introduction to Probability Theory and Its Applications. volume
1, Wiley (1966)

 76

29. Eric W. Weisstein, CRC Concise Encyclopedia on Mathematics. Chapman &
Hall/CRC (2003)

30. Gilbert Strang, Linear Algebra and its Applications. Thompson Learning, Inc (1988)

31. George Arfken and Hans Weber, Mathematical Methods for Physicists. Harcourt
Academic Press, 5th edition (2001)

32. Nicholas J. Higham, Accuracy and Stability of Numerical Algorithms. Society of
Industrial and Applied Mathematics (1996)

 77

Vita

Second Lieutenant James Scoville graduated from East View High School in

Apple Valley, Minnesota. He entered undergraduate studies at the United States Air

Force Academy where he was commissioned and graduated with honors with a Bachelor

of Science degree in Physics in June 2004. Following this he entered the Graduate

School of Engineering Physics at the Air Force Institute of Technology, Wright Patterson

AFB. Upon graduation, he will be assigned to the Air Force Research Laboratory at

Hanscom AFB, Massachusetts.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of the collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

23-03-2006
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Jun 2005 – Mar 2006
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Type II Quantum Computing Algorithm
For Computational Fluid Dynamics

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Scoville, James A., Second Lieutenant, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 Hobson Way, Building 640
 WPAFB OH 45433-8865

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GAP/ENP/06-17

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 AFRL/VSBYA
 Attn: Dr. Jeffrey Yepez
 29 Randolph Rd.
 Hanscom AFB, MA 01731 DSN: 377-5957

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

14. ABSTRACT
An algorithm is presented to simulate fluid dynamics on a three qubit type II quantum computer: a lattice of small
quantum computers that communicate classical information. The algorithm presented is called a three qubit
factorized quantum lattice gas algorithm. It is modeled after classical lattice gas algorithms which move virtual
particles along an imaginary lattice and change the particles’ momentums using collision rules when they meet at a
lattice node. Instead of moving particles, the quantum algorithm presented here moves probabilities, which interact
via a unitary collision operator. Probabilities are determined using ensemble measurement and are moved with
classical communications channels. The lattice node spacing is defined to be a microscopic scale length. A
mesoscopic governing equation for the lattice is derived for the most general three qubit collision operator which
preserves particle number. In the continuum limit of the lattice, a governing macroscopic partial differential
equation—the diffusion equation—is derived for a particular collision operator using a Chapman-Enskog expansion.
A numerical simulation of the algorithm is carried out on a conventional desktop computer and compared to the
analytic solution of the diffusion equation. The simulation agrees very well with the known solution.
15. SUBJECT TERMS
Quantum Theory, Quantum Computing, Quantum Computers, Type II Quantum Computers, NMR Quantum
Computers, Fluid Dynamics, Computational Fluid Dynamics, Algorithms
16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
David E. Weeks (ENP)

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

17. LIMITATION
OF
 ABSTRACT

UU

18.
NUMBER
 OF
 PAGES

94

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636, ext 4561
(david.weeks@afit.edu)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

